
Courtesy of http://BlackRac

55

General Electric Ceramic Tubes

Reference Data

Reference Data For General Electric Ceramic Tubes

GENERAL ELECTRIC

Owensboro, Kentucky

Published January, 1968 Copyright 1968 by General Electric Company Manufactured in the United States of America

This publication contains published data sheets and application notes on General Electric Geramic tube types. Twenty-nine of these types are registered EIA types, and are available from stock. Forty are developmental types and are available from stock or with several weeks lead time.

This line of tubes represent the state of the art in many areas. Major advantages offered by various types are as follows:

> Small Size Low Noise High Gain Large Gain-Band Width Products Operation to C and X Band High Temperature Tolerance, 400-500^O C Tolerance to Shock and Vibration Radiation Resistance Long Pulse Ratings High Pulsed Duty Factors

These devices compete favorably in many applications with low power klystrons, TWT's, parametric amplifiers, varactors, and transistors.

This publication is revised periodically, but supplements are not distributed between publications. For the latest information on new developments or applications of General Electric Ceramic tubes, contact our Regional OEM Sales Manager in your area, or a franchised General Electric Industrial Tube Distributor.

RESEARCH AND DEVELOPMENT AREAS

- 1. High Current Density Cathodes
- 2. Lower Heater Power Designs
- 3. Fast Warm-Up Heater-Cathode Structures
- 4. High Dissipation Anodes
- 5. X Band (10 Gc.) CW and Pulse Triodes
- 6. Integral Tube-Cavity Microwave Oscillators
- 7. Broadband Pulse Amplifiers
- 8. Radiation Environment Performance Evaluation
- 9. Dual Mode Transmit and Receive Operation

OTHER USES FOR CERAMIC TUBES

- . Frequency Multipliers
- . RF Power Source for Varactor Multipliers
- . Microwave Mixers and Detectors
- . Doppler Radars for Traffic Control and Motion Detection
- . Broadband Amplifiers
- . Video Amplifiers
- . Audio, Servo, and Sub-Audio Amplifiers
- . High-Voltage Rectifiers
- . High-Voltage Regulators
- . Microwave Modulators

CERAMIC TUBE SELECTION CHART

COAXIAL TUBE SELECTION CHART

OPTIMUM NOISE CONDITIONS VS FREQUENCY CURVES

SMALL SIGNAL TRIODE GAIN CURVES

PLANAR TRIODE MICROWAVE PERFORMANCE CURVE FOR CW OPERATION

PLANAR TRIODE MICROWAVE PERFORMANCE CURVE FOR PULSED OPERATION

DATA FOR REGISTERED TYPES

2C39-B	6942	7462	7910
6251	7077	7486	7911
6283	7266	7588	7913
6299	7289	7720	7985
6442	7296	7768	8500
6771	7391	7815	8513
6848	7399	7815-R	8866
6897			

DATA FOR DEVELOPMENTAL TYPES

A-0897	ZP-1039	Y-1124	Y-1537
ZP-1015	ZP-1043	Y-1171	Y-1540
ZP-1016-B	ZP-1044	Y-1223	Y-1541
ZP-1024	ZP-1057	Y-1236	Y-1549
ZP-1025	ZP-1061	Y-1251	Y-1600
ZP-1026	ZP-1064	Y-1266	Y-1623
ZP-1029	ZP-1065	Y-1397	Y-1636
Y-1032	ZP-1070	Y-1481	Y-1641
ZP-1034	ZP-1074	Y-1530	Y-1730
ZP-1038	ZP-1079	Y-1536	Z-2689

GENERAL TECHNICAL INFORMATION

A New Generation of Gridded Vacuum Tubes for Microwave Use

Socketless Tube Circuit Techniques

Noise Figure and the Gridded Vacuum Tube

Use of Gridded Ceramic Vacuum Tubes in Phased-Array Long-Pulse UHF Radars

Life Test Summary of Ceramic Types Under High Temperature and High Humidity Conditions

Results of Recent Tests of Ceramic Tubes During Exposure to Nuclear Radiation

General Electric

	CERAMIC	TUBE	SELECTION	CHART
--	---------	------	-----------	-------

		Approx.	Type	Maximum Rati	ngs				Useful
Classification		Envelope Diameter	of Terminals	Plate Dissipation (Watts)	Current (milliamperes)	Gm	u		requencies xtend to **
	2C40* •	1.3"	Octal	6.5Δ	Ib = 25	4850	36	UHF Amp.	3000 mc
	2C40A**	1.3"	Octal	6.5Δ	$I_{b} = 25$	5100	35	UHF Amp.	3000 mc
	6299	0.5"	Coax.	2.0Δ	$I_{b} = 12$	15000	110	Low-Noise UHF Amp.	3000 mc
	6771	0.5"	Coax.	6.25Δ	$I_{b} = 25$	23000	90	UHF Amp.	4000 mc
	7077	0.3"	Coax.	1.0	$I_{k} = 10$	10000	90	Low-Noise UHF Amp.	3000 mc
	7296	0.5"	Lug (T)	5.5	$I_{k} = 30$	16500	90	VHF Amp.	500 mc
	7462	0.3"	Lug	1.0	$I_{k} = 10$	10500	94	Low-Noise VHF Amp.	500 mc
Triode - Class	7588	0.5"	Lug (T)	5.5	$I_{k} = 30$	45000	175	Low-Noise VHF Amp.	500 mc
A Operation	7644 •	0.5"	Coax.	2.0	$I_{b} = 12$	15000	110	Same as 6299 but Controlled for Black-out	3000 mc
	7768	0.5"	Coax.	5.5	$I_{k} = 30$	50000	225	Low-Noise VHF Amp.	3000 mc
	7784 .	0.5"	Coax.	2.04	$1_{\rm b} = 12$	15000	110	Isolated Heater Version of 6299	3000 mc
	8083 .	0.3"	Lug (T)	1.0	$\hat{1}_{k} = 10$	10500	94	Characteristics same as 7462	500 m
	Y-1032	0.3"	Coax.	0.6	$I_{k} = 10$	10000	36	Low-mu, Low Plate Voltage Osc., Amp., or Mul	
	Z-2354 •	1.0"	Lug	12	$I_{k} = 100$	4300	8	Servo Power Amp.	
	Z-2835 •	0.5"	Coax.	5.5	$I_k = 30$	16500	90	UHF Amp.	3000 mg
	2C39B	1.3"	Coax.	100Δ	$I_{k} = 125$	24800	95	UHF Power Amp, Osc., or Freq. Mult.	2500 m
	2C40A*•	1.3"	Octal	6.5Δ	$I_{b} = 25$	5100	35	UHF Power Amp, or Osc.	3000 m
	2C43* •	1.3"	Octal	120	$I_{b} = 40$	8100	50	UHF Power Amp. or Osc.	3000 m
	3CX100A5	• 1.3"	Coax.	1004	$I_{k} = 125$	25000	100	See 7289	3000 m
	6442	0.5"	Coax.	8.04	$I_{b} = 35$	16500	50	UHF Power Amp., Osc., or Freq. Mult.	5000 m
	6771	0.5"	Coax.	6.25△	$I_{b} = 25$	23000	90	UHF Power Amp., Osc., or Freq. Mult.	6000 m
	6897	1.3"	Coax.	100Δ	$I_{k} = 125$	24800	95	UHF Power Amp., Osc., or Freq. Mult.	3000 m
	7289	1.0"	Coax.	1004	$I_{k} = 125$	25000	100	UHF Power Amp., Osc., or Freq. Mult.	3000 m
Triode - Class	7296	0.5"	Lug (T)	5.5	$I_{k} = 30$	16500	90	VHF Power Amp., Osc., or Freq. Mult.	500 m
B or C	7391	0,5"	Coax.	2.254	$I_{b} = 15$	11000	62	UHF Power Amp., Osc., or Freq. Mult.	6000 m
Operation	7486	0.3"	Coax.	1.0	$I_{k} = 10$	10500	. 90	UHF Power Amp., Osc. or Freq. Mult.	3000 m
	7720	0.3"	Lug	1.0	$I_{k} = 10$	10500	90	VHF Power Amp., Osc., or Freq. Mult.	500 m
	7913	0.5"	Coax.	5.5	$I_{k} = 30$	40000	100	UHF Power Amp., Osc., or Freq. Mult.	3000 m
	8082.	0.3"	Lug (T)	1.0	$I_{k} = 11$	10500	90	Characteristics same as 7720	500 m
	A-0897	1.0"	Coax.	7.04	$I_{k} = 100$	24800	95	UHF Power Amp., Osc., or Freq. Mult.	3000 m
	Y-1223	0.5"	Coax.	30.0	$I_{k} = 100$	40000	100	UHF Power Amp., Osc., or Freq. Mult.	3000 m
	Y-1251	0.3"	Coax.	2.5	$I_{p} = 20$	13500	65	UHF Power Amp., Osc., or Freq. Mult.	6000 m
	Y-1266	0.3"	Coax.	4.0	$I_{k} = 40$	8000	35	UHF Power Amp., Osc., or Freq. Mult.	3000 m
	Z-2835*	0.5"	Coax.	5.5	$I_{k} = 30$	16500	90	UHF Power Amp., Osc., or Freq. Mult.	3000 m

• Detailed Rating Sheet not included

*Glass - Metal lighthouse tube.

** The frequency listed is one at which significant application data are available or expected, and does not necessarily represent an absolute frequency limit. (T) Provision is made for mounting with T-bolt.

 Δ At this dissipation level, anode cooling is usually necessary to prevent exceeding maximum permissible seal temperature.

General Electric

CERAMIC TUBE SELECTION CHART

Classification	Туре	Approx. Envelope Diameter	Type of Terminals	Maximum Ra Plate Dissipation (Watts)	tings Current (milliamperes)	G _m	u	Typical Application	Useful Frequencies Extend to **
	2C40A*• 2C43•	1.3" 1.3"	Octal Octal	4.0∆ 6.0∆	$\hat{i}_p = 2000$ $\hat{i}_p = 2750$	5100 8100	35 50	Pulsed Osc. or Amp. Pulsed Osc. or Amp.	3000 mc 3370 mc
	6442	0.5"	Coax.	7.5Δ	${\hat{1}_{p}} = 2500$ ${\hat{1}_{g}} = 1250$	16500	50	Pulsed Osc. or Amp.	6000 mc
	6771	0.5"	Coax.	5.04	$ (\hat{1}_{p} = 1250) $ $ (\hat{1}_{p} = 1250) $ $ (\hat{1}_{g} = 700) $	23000	90	Pulsed Osc. or Amp.	6000 mc
Triode Pulse	7815	1.2"	Coax.	10.04	(îp 3000 (îg 1500			Pulsed Osc. or Amp.	3000 mc
Operation	7910 7911	0.3" 0.5"	Coax. Coax.	1.5	$\hat{1}_{p}$ 600 $\hat{1}_{p}$ 2500	16000 25000	75 58	Pulsed Oscillator Pulsed Osc. or Amp.	7500 mc 6000 mc
	Y-1124	0.3"	Coax.	2.6	(îp 400	12000	75	Pulsed Osc. or Amp.	6000 mc
	Y-1236	0.5"	Coax.	30.0∆	$\hat{1}_{p}^{(1g)} = 2000$	27000	55	Pulsed Oscillator	6000 mc
	7266	0.3"	Coax,	Tube Voltage Drop: 1 Volt @ I _b = 1.0 milli	lamperes			Signal Detector	3000 mc
Diode Signal	7841•	0.3"	Coax.	$\begin{array}{l} Ib=2 \text{ milliamperes ma}\\ Tube \mbox{ Voltage Drop:}\\ 2.6 \mbox{ Volts } @\mbox{ Ib} = 5.0 \mbox{ m}\\ Ib=5 \mbox{ milliamperes ma} \end{array}$	nilliamperes			Signal Detector, Low Voltage Drop 7266	3000 mc
Diode Power	Z-2689	0.5"	Lug (T)	Tube Voltage Drop: 18 Volts @ Ib = 40 milliamperes Ib = 25 milliamperes maximum				Low Current Power Rectifier	

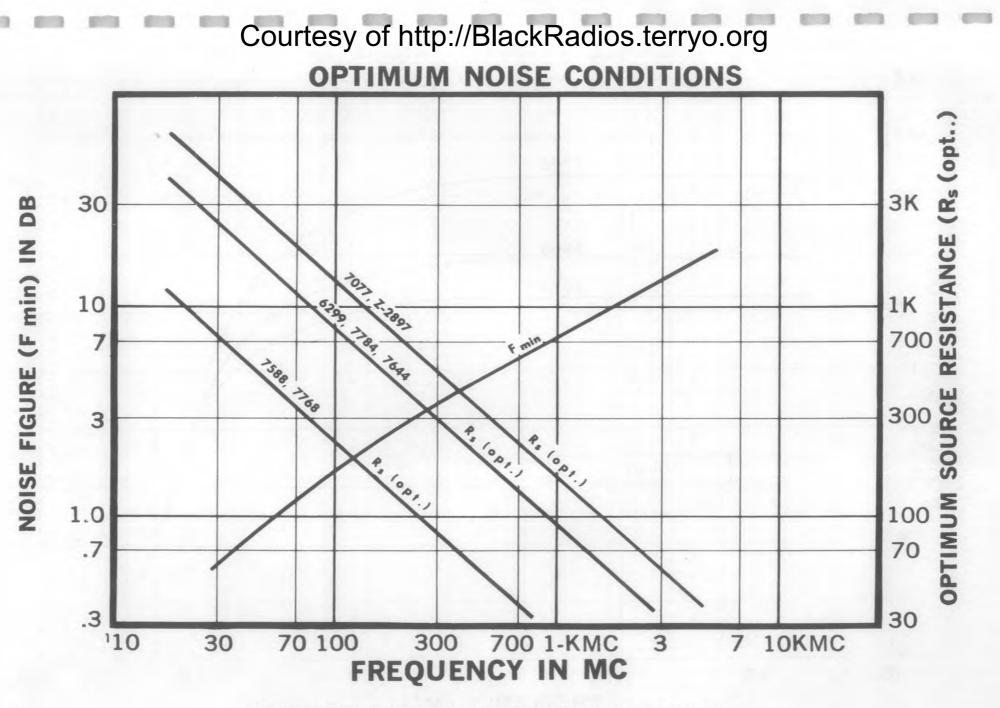
· Detailed Rating Sheet not included

* Glass - Metal lighthouse tube.

** The frequency listed is one at which significant application data are available or expected, and does not necessarily represent an absolute frequency limit.(T) Provision is made for mounting with T-bolt.

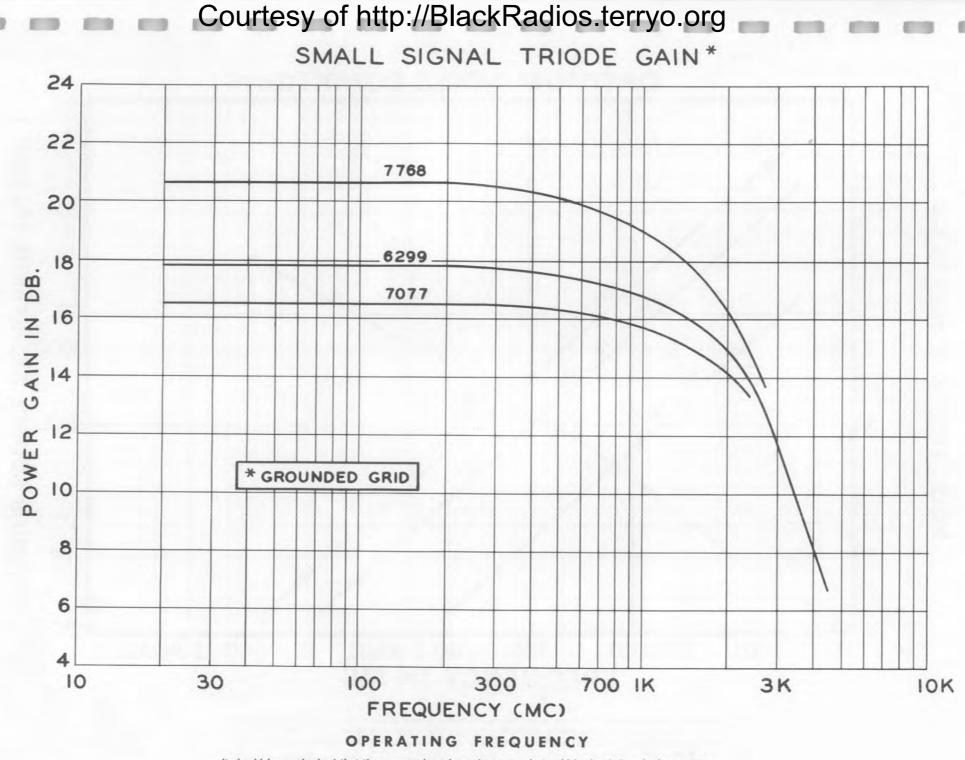
 Δ At this dissipation level, anode cooling is usually necessary to prevent exceeding maximum permissible seal temperature.

COAXIAL TUBE SELECTION CHART

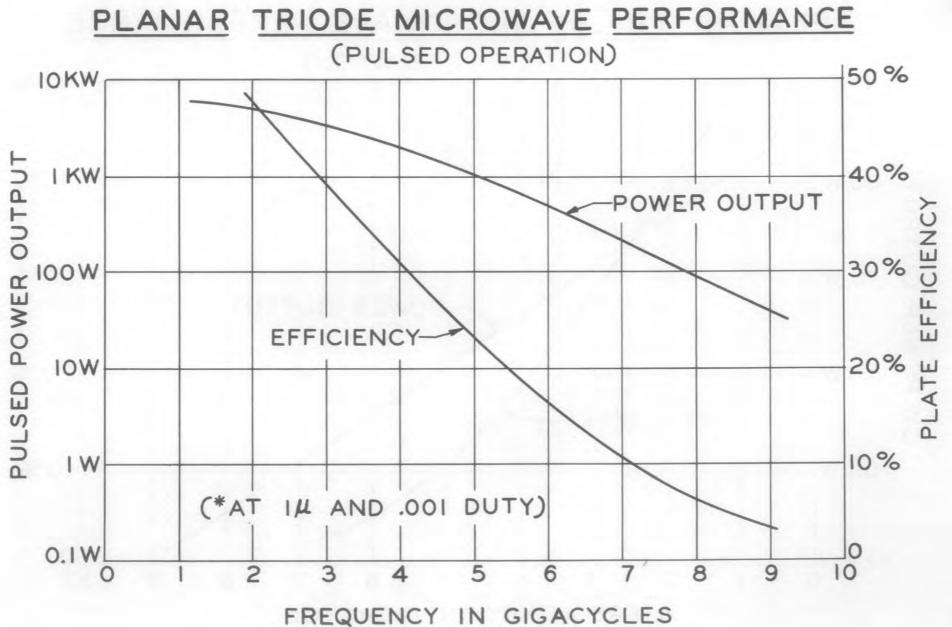

CAPABILITIES OF GENERAL ELECTRIC

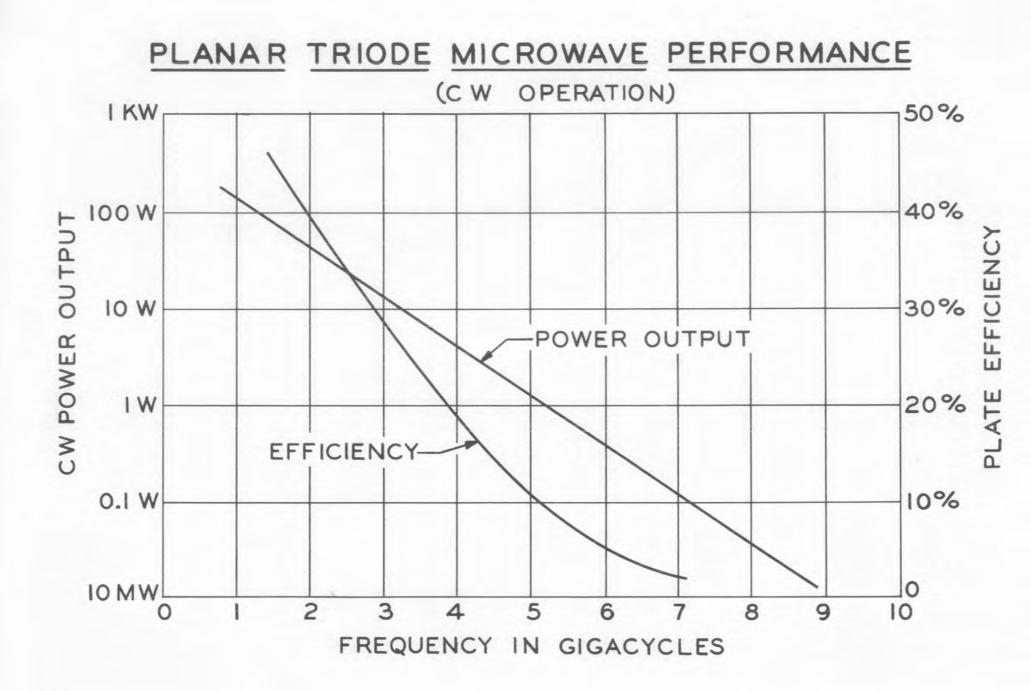
METAL-CERAMIC TRIODES AND TETRODES

Application	Tube Type	Service	Typical Capabilities	Cooling
Phased Array and Conventional Radar (200-1300 mcs, approx)	GL-7399 ZP-1038 *	RF-Pulsed Amplifier	500 mcs; 10% Bandwidth 250 µsec; 0.005 Duty 30 KW, Peak; 10 db Gain	Forced-air
	GL-7399 ZP-1038 *	RF-Pulsed Amplifier	425 mcs; 11% Bandwidth 50 µsec; 0.010 Duty 10 KW, Peak; 9 db Gain	Forced-air
	GL-7399 ZP-1038 *	RF-Pulsed Amplifier	425 mcs; 5% Bandwidth 20 µsec; 0.001 Duty 60 KW, Peak; 10 db Gain	Forced-air
	ZP-1034	RF-Pulsed Amplifier	1300 mcs; 10% Bandwidth 500 µsec; 0.060 Duty 5 KW, Peak; 10 db Gain	Liquid
	ZP-1065	RF-Pulsed Amplifier	425 mcs; 20% Bandwidth 3.5 μsec; 0.005 Duty 10 KW, Peak; 7 db Gain	Forced-air
	ZP-1025	RF-Pulsed Oscillator	1300 mcs; 25 KW, Peak 10 µsec; 0.001 Duty	Conduction
	ZP-1074	RF-Pulsed Oscillator	425 mcs; 40 KW, Peak 10 μsec; 0.002 Duty	Conduction
AM and FM Transmitters (50-1250 mcs, approx)	GL-6283 GL-8500 ZP-1070	RF Amplifier	225-400 mcs 440 Watts PEP; 13 db Gain 300 Watts CW; 13 db Gain	Forced-air
	GL-6942	RF Amplifier	1000 mcs 1 KW CW; 11 db Gain	Forced-air
	ZP-1064		225-400 mcs 3 KW PEP; 16 db Gain 4 KW CW; 14 db Gain	Forced-air
	GL-6848	RF Amplifier	225-400 mcs 3.2 KW CW; 15 db Gain	Forced-air
	GL-7985	RF Amplifier	225-400 mcs 4.4 KW PEP; 17 db Gain	Liquid
	GL-8513 ZP-1039	RF Amplifier	225-400 mcs 6 KW PEP; 15 db Gain < 5% Distortion	Forced-air


CAPABILITIES - 2

Application	Tube Type	Service	Typical Capabilities	Cooling
IFF Radar (1030 & 1090 mcs)	GL-7399 ZP-1015 ZP-1065	RF-Pulsed Amplifier (Grid-Pulsed)	1030 mcs 10 µsec; 0.010 Duty 10 KW, Peak; 8.5 db Gain	Forced-air or Conduction
	GL-8866	RF-Pulsed Amplifier (Grid-Pulsed)	1030 mcs 10 usec; 0.020 Duty 2 KW, Peak; 10 db Gain	Conduction
	ZP-1043	RF-Pulsed Amplifier (Grid-Pulsed)	1030 mcs 10 µsec; 0.004 Duty 2 KW, Peak; 7 db Gain	Conduction
	ZP-1061	RF-Pulsed Oscillator (Grid-Pulsed)	1090 mcs; 1 KW , Peak 20 µsec; 0.010 Duty	Conduction
	ZP-1029	RF Switching	1030 mcs; 10 KW, Peak 0.007 Duty	Conduction
CW or Pulsed Signal Generators (200-2000 mcs, approx)	ZP-1025 ZP-1074	RF-Pulsed Oscillator	200-1300 mcs 5 μsec; 0.005 Duty 5 KW, Peak	Conduction
			200-1300 mcs 5 µsec; 0.001 Duty 20 KW, Peak	
	ZP-1044	RF CW Oscillator	200-1000 mcs 1 KW	Forced-air
	ZP-1057	RF CW Oscillator	200-1300 mcs 200 Watts	Forced-air
	ZP-1058	RF CW Oscillator	200-2000 mcs 100 Watts	Forced-air
Electronic Voltage Regulators	ZP-1016B	High-Voltage Series Regulator	10 KV DC Hold-Off 300 Watts Dissipation	Forced-air
	ZP-1038R	High-Voltage Series Regulator	10 KV DC Hold-Off 1000 Watts Dissipation	Circulating Oil
VHF-UHF Television	GL-6283 GL-8500 ZP-1070	RF Amplifier	900 mcs 260 Watts, Synch Peak	Forced-air
	GL-6942	RF Amplifier	900 mcs 1000 Watts, Synch Peak	Forced-air
	GL-6251	RF Amplifier	216 mcs 25 KW, Synch Peak	Liquid


It should be emphasized that these curves have been drawn merely to aid in the choice of tubes, not to be a clear-cut guide to performance capability. You are encouraged at all times to contact your GE field representative so that any particular application can be reviewed and the limitations of this chart can be taken into account.


(FOR FURTHER DETAILS SEE ARTICLE ON NOISE IN THE GENERAL TECHNICAL INFORMATION SECTION)

It should be emphasized that these curves have been drawn merely to aid in the choice of tubes, not to be a clear-cut guide to performance capability. You are encouraged at all times to contact your GE field representative so that any particular application can be reviewed and the limitations of this chart can be taken into account.

Courtesy of http://BlackRadios.terryo.org

DATA FOR REGISTERED TYPES

DATA FOR REGISTERED TYPES

ELECTRICAL

Heater Current at Ef = 6.3 volts 1.03[†] Amperes

 Grid to Plate: (g to p)
 2.01 pf

 Grid to Cathode: (g to k)
 6.5 pf

 Plate to Cathode: (p to k)
 0.023 pf

2С39-В

PLANAR TRIODE

2C39-B ET-T1054B Page 1 12-61

DESCRIPTION AND RATING=

FOR GROUNDED-GRID OSCILLATOR AND AMPLIFIER SERVICE

Metal and Ceramic High Transconductance

Low Interelectrode Capacitances Shock Resistant

100 Watts Plate Dissipation

The 2C39-B is a metal-and-ceramic, high-mu triode designed for use as a grounded-grid oscillator or amplifier at frequencies as high as 2500 mega-cycles.

Features of the 2C39-B include planar electrode construction, high plate dissipation capability, excellent electrode isolation, low radio-frequency losses, high transconductance, and low interelectrode capacitances.

GENERAL

* Volts

MECHANICAL	
Mounting Position—Any—Only Plate Flange Socket Stop and Clamp	
Net Weight, approximate	Ounces
Plate and Plate Seal—Conduction and Forced Air	
Grid and Cathode Seals-Conduction and	
Forced Air	
Recommended Air Flow Cowling-157-JAN	
Recommended Air Flow on Plate Radiator at Sea Level	
Incoming Air Temperature 25C, Plate Dissipation	
100 Ŵatts12.5	Cubic Feet Per Minute

MAXIMUM RATINGS

ABSOLUTE-MAXIMUM VALUES

Cathode—Coated Unipotential Heater Characteristics and Ratings Heater Voltage, AC or DC.....

Direct Interelectrode Capacitances!

RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY

Key-Down Conditions per Tube Without Amplitude Modulation§

Heater Voltage*	Volts
DC Plate Voltage	Volts
Negative DC Grid Voltage 150	Volts
Peak Positive RF Grid Voltage	Volts
Peak Negative RF Grid Voltage	Volts
DC Grid Current	Milliamperes
DC Cathode Current	Milliamperes
Plate Dissipation	Watts
Grid Dissipation	Watts
Envelope Temperature at Hottest	
Point #	С

RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR-

Carrier Conditions per Tube For Use With a Maximum Modulation Factor of 1.0

Heater Voltage*	Volts
DC Plate Voltage¶	Volts
Negative DC Grid Voltage	Volts
Peak Positive RF Grid Voltage	Volts
Peak Negative RF Grid Voltage	Volts
DC Grid Current	Milliamperes
DC Cathode Current	Milliamperes
Plate Dissipation	Watts
Grid Dissipation	Watts
Envelope Temperature at Hottest	THE COS
Point #	C

Supersedes ET-T1054A dated 9-57

2C39-B ET-T1054B Page 2 12-61

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Heater Voltage	Volts
Plate Voltage	Volts
Grid Voltage∆	Volts
Amplification Factor	
Transconductance	Micromhos
Plate Current	Milliamperes

The equipment designer should design the equipment so that heater voltage is centered at some value within the range of 4.5 to 6.3 volts. Heater voltage variations about the center value should be kept as small as practical and should not, in any case, exceed $\pm 5\%$. The optimum center value of heater voltage depends on the cathode current and on other parameters of circuit design and operation. For specific recommendations, contact your General Electric tube sales representative.

RADIO FREQUENCY OSCILLATOR-CLASS C

Frequency	2500	Megacycles
Heater Voltage	5.0	Volts
DC Plate Voltage	900	Volts
DC Plate Current	90	Milliamperes
DC Grid Current	27	Milliamperes
DC Grid Voltage40	-22	Volts
Useful Power Output40	17	Watts

1 Measured in a special shielded socket.

- § Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 percent of the carrier conditions.
- * Where long life and reliable operation are important, lower envelope temperatures should be used.
- ¶ For modulation factors less than 1.0, a higher d-c plate voltage may be used if the sum of the peak positive audio voltage and the d-c plate voltage does not exceed 1200 volts. △Adjusted for Ib = 75 milliamperes.

† Heater current of a bogey tube at Ef = 6.3 volts.

INITIAL CHARACTERISTICS LIMITS

	Min.	Bogey	Max.	
Heater Current Ef = 6.3 volts	950	1030	1100	Milliamperes
Grid Voltage Ef = 6.3 volts, Eb = 600 volts, Ib = 75 ma	-1.3	-2.5	-3.5	Volts
Grid Voltage $Ef = 6.3$ volts, $Eb = 600$ volts, $Ib = 1.0$ ma		-9.5	-15	Volts
Transconductance $Ef = 6.3$ volts, $Eb = 600$ volts, Ec adjusted for $Ib = 75$ ma	22000	24800	27500	Micromhos
Amplification Factor Ef = 6.3 volts, Eb = 600 volts, Ec adjusted for Ib = 75 ma.	75	95	115	
Negative Grid Current Ef = 6.3 volts, Eb = 600 volts, Ec adjusted for Ib = 75 ma.			3.0	Microamperes
Interelectrode Leakage Resistance Ef = 6.3 volts, Polarity of applied d-c interelectrode voltage is such that no				
cathode emission results Grid to Cathode at 500 volts d-c	50	+++++	11515	Megohms
Interelectrode Capacitances	1.89	2.01	2.13	Picofarads
Grid to Plate: (g to p)	00000	6.5	7.0	Picofarads
Grid to Cathode: (g to k) Plate to Cathode: (p to k)		0.023	0.029	Picofarads

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or all other electron devices in the equipment. The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

2C39-B Page 31 10.62

SPECIAL PERFORMANCE TESTS

Oscillator Power Output Tubes are tested for power output as an oscillator under the following conditions: Ef = 5.0 volts; F = 2500 MC, min.; Eb = 1000 volts; Ib = 90

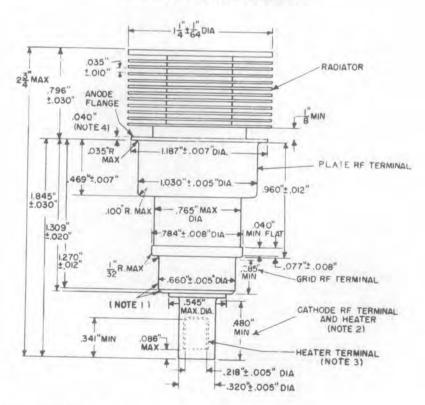
Low Pressure Voltage Breakdown Test

Statistical sample tested for voltage breakdown at a pressure of 27 mm Hg. Tubes shall not give visual evidence of flashover when 1000 volts RMS, 60 cps, is applied between the plate and grid terminals.

Min. Max.

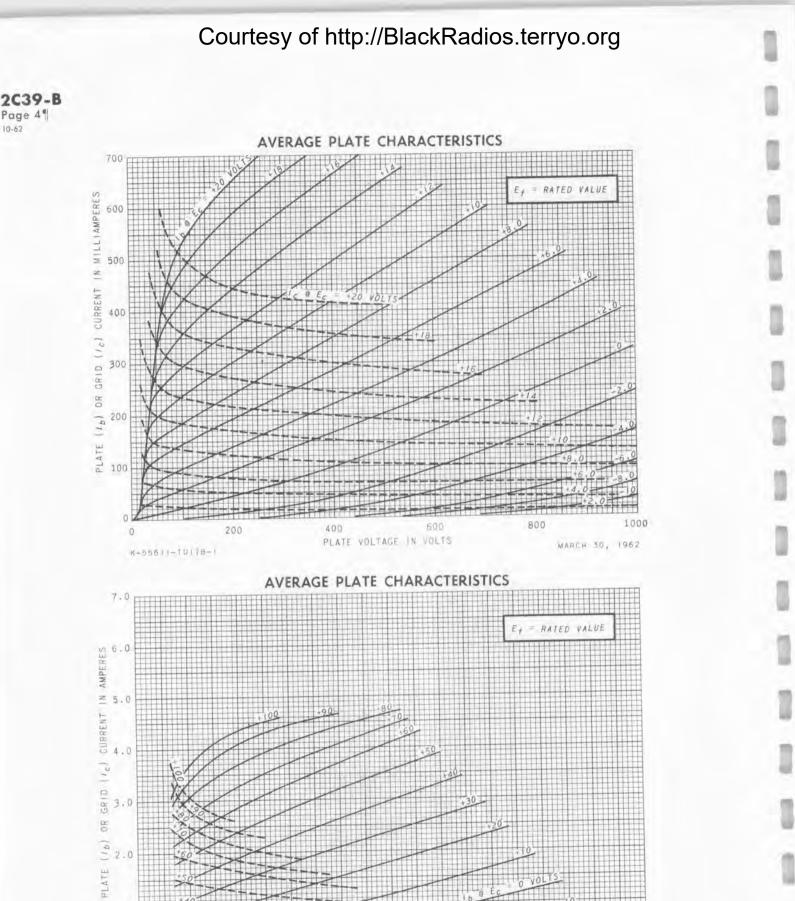
.... Watts

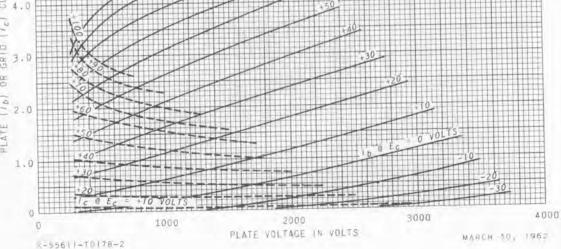
DEGRADATION RATE TESTS

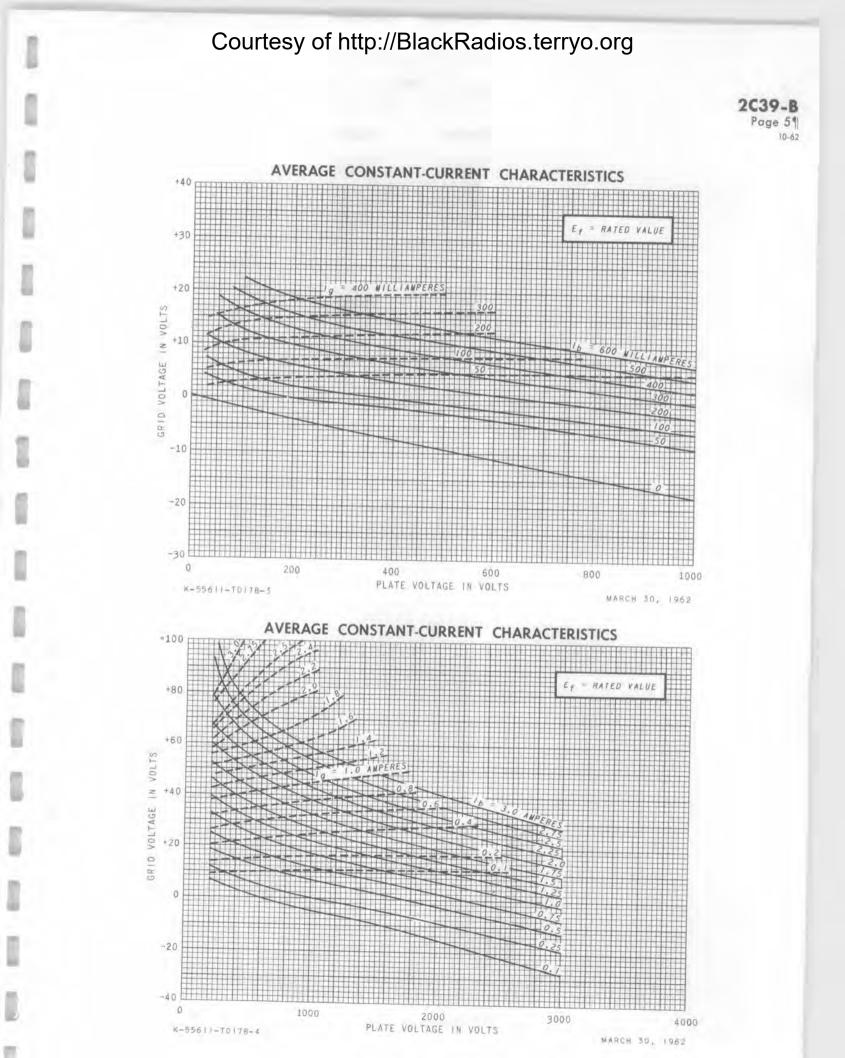

Shock

Statistical sample subjected to 5 input accelerations of approximately 400 G and 1.0 milliseconds duration in each of four positions. The accelerating forces are applied by the Navy-type, High Impact (flyweight) Shock Machine.

500-Hour Life Test


Statistical sample operated for 500 hours as an oscillator to evaluate changes in power output with life.


PHYSICAL DIMENSIONS



NOTES:

- 1. Solder not to extend radially beyond grid RF terminal.
- 2. Total indicated runout of the grid-contact surface and the cathode-contact surface with respect to the anode shall not exceed 0.020".
- 3. Total indicated runout of the cathode-contact surface with respect to the heater-contact surface shall not exceed 0.012".
- 4. Only this flange to be used as a socket stop and clamp.
- " New pages 3 to 6 supersede old pages 3 and 4 dated 12-61.

Courtesy of http://BlackRadiosterryo.org ET-T1165A Page 1 9-67

Tetrode

TUBES

INNOVATIONS

IN ACTION-

25-KILOWATTS VHF TELEVISION OUTPUT VHF TETRODE GROUNDED-GRID CIRCUITS

The GL-6251 is a four-electrode, waterand-forced-air-cooled transmitting tube for use as a power amplifier or oscillator in grounded-grid circuits with both grids maintained at radio-frequency ground potential. The output circuit is connected between the anode and the screen grid. The anode is capable of dissipating twenty-five kilowatts. The cathode is a thoriated-tungsten filament. Maximum ratings apply up to 220 megacycles.

In Class B grounded-grid broadband television amplifier service this tube has a useful synchronizing peak-power out-

WATER COOLED METAL AND CERAMIC GAIN IN EXCESS OF 10

put of twenty-five kilowatts at 220 megacycles. Because of its ratings, the tube is also well adapted to use in dielectricheating equipment.

High operating efficiency is assured because of the close spacing of the tube electrodes, the ring-seal construction, and the low-loss factor due to the silverplated external parts and the ceramic insulator. The ring-seal design permits quick plug-in installation. In addition, the grounded-grid construction eliminates the necessity for neutralization in a properly designed circuit.

100		1.4		(S.	- 1	÷
EI	P	C1	1 11	10	11	r
	~	•			M.	

crocificat				Thermal	
$\begin{array}{c} \mbox{Minimum}\\ \mbox{mum}\\ \mbox{Filament Voltage} & 5.1\\ \mbox{Filament Current at 5.5 Volts} & \\ \mbox{Filament Starting Current} & \\ \mbox{Filament Starting Current} & \\ \mbox{Filament Heating Time} & 30\\ \mbox{Amplification Factor, } G_2 to G_1\\ \mbox{E}_b = 1000 Volts, I_b = 0.1 \mbox{Amps} & \\ \mbox{Peak Cathode Current}^*\\ \mbox{Direct Interelectrode Capacitances} \\ \mbox{Grounded-Grid Circuit}\\ \mbox{Cathode-Plate}^{\dagger}, & \\ \mbox{Input}, & \\ \mbox{Output}, & \\ \mbox{Cathode-Plate}^{\dagger}, & \\ \mbox{Output}, $	Bogey 5.5 190 0.004 20 0.06 75	5.75 	Volts Amperes Amperes Ohms Seconds Amperes $\mu\mu f$ $\mu\mu f$	Type of Cooling—Water and Forced Air Water Cooling Water Flow Anode	Minute Pounds per Square Inch Pounds per Square Inch C
Mechanical				Grid-to-Grid Seal	nor Minuto
Mounting Position . Net Weight, approximate	Vertic	cal, an Po	ode down unds	Ceramic Temperature	per Minute

GL-6251 ET-T1165A Page 2 9-67

RADIO-FREQUENCY AMPLIFIER-CLASS B TELEVISION SERVICE

Synchronizing-Level Conditions Per Tube Unless Otherwise Specified

	DC Plate Current	
Maximum Ratings, Absolute Values	Synchronizing Level	Amperes
DC Plate Voltage	Pedestal Level	Amperes
DC Grid-No. 2 Voltage 700 Max Volts	DC C 11 N C Comment//	
DC Plate Current 8 Max Amper	es DC Grid-No. 2 Current//	Amperes
Plate Input 50 Max Kilowa	arrs - cucului activitititi	Amperes
Grid-No. 2 Input [‡]		America
DC Grid-No. 2 Current	by treate official back of the state of the	Amperes
Pedestal Level	Pedestal Level	Amperes
Plate Dissipation		
Plate Dissipation	Synchronizing Level	Kilowatts
Grid-No. 1 Dissipation	Pedestal Level 1.3	Kilowatts
⊕DC Grid-No. 1 Current 1.0 Max Amper	1 UWCI Output, upproximate	
Typical Operation-Grounded-Grid Circuit up to 216 Megacycles		Kilowatts
	Pedestal Level	Kilowatts
Bandwidth 7 Megacycles, 1 Decibel Voltage		
DC Plate Voltage		
⊕DC Grid-No. 2 Voltage// 600 Volts		
DC Grid-No. 1 Voltage		
Peak RF Plate Voltage		
Synchronizing Level		
Pedestal Level		

Maximum usable cathode current (plate current plus current to each grid) for any condition of operation.

Volts

Volts

Control grid and screened grid are connected together. Measured with 12-inch diameter flat metal disk attached to the screen-grid terminal and grounded.

350

250

Calculated from characteristic curve only. This value includes dissipation transferred from driving power. Maximum allowable screen input as indicated by measured d-c current and voltage is much lower because of secondary screen emission.

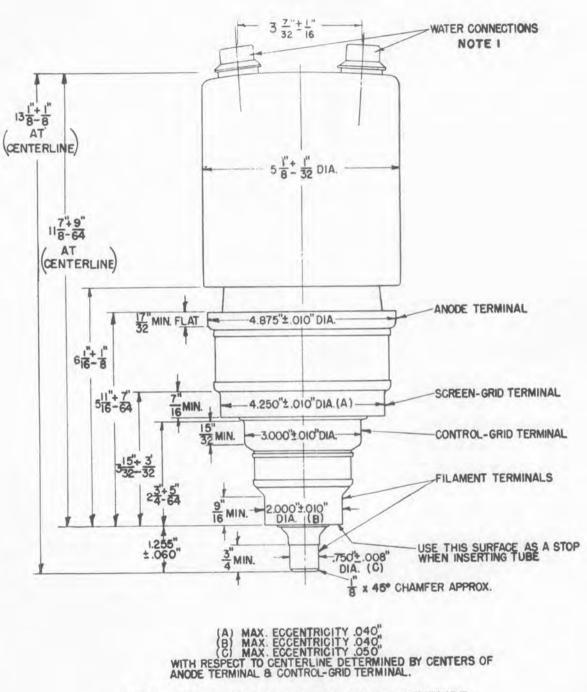
/DC Grid-No. 2 voltage and current should be held at the minimum values consistent with proper circuit operation. Negative values of screen current are frequently encountered but are not detrimental.

Useful power output including power transferred from driver stage. 1


⊕ Denotes a change.

Denotes an addition.

Peak RF Driving Voltage


Pedestal Level.

Synchronizing Level.....

NOTE 1: MATES WITH WIGGINS SOCKET NO. BC-323B OR EQUIVALENT. E. B. WIGGINS OIL TOOL COMPANY, INC., LOS ANGELES, CALIFORNIA

TUBE DEPARTMENT

SCHENECTADY, N. Y. 12305

GENERAL

ELECTRIC

1-6-59

N-20726AZ

GL-6283 ET-T10508 Page 1 2-65

GL-6283

RADIO-FREQUENCY AMPLIFIER CW SERVICE GROUNDED-GRID OPERATION

The GL-6283 is a reliable power tetrode that delivers useful output to 1250 megacycles or higher. This tube is particularly suitable for application in the final output or driver stage of military-communications systems.

As a Class B linear amplifier in the 225-400-megacycle range, the tube will deliver 110 watts of carrier power modulated up to 100 percent. Since a power gain of 20 may be realized, drive requirements are low—approximately 5 watts at carrier level.

FORCED-AIR COOLED METAL AND CERAMIC INTEGRAL RADIATOR

Operating as a Class C CW amplifier at 900 megacycles, the gain is approximately 15 at the 200-watt level.

Features of the GL-6283 include long life and reliability, high gain, high linearity, and resistance to shock and vibration.

These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where performance and reliability are important.

	Electr	ical			1	Ther	nal		
	Minimum	Bogey	Maximu	n	Cooling-Forced Air§				
Heater Voltage*	-	6.3	6.8	Volts	Through Radiator, at				
Heater Current.		3.8		Amperes,	Sea Level**				
Cathode Heating Time Amplification Factor, G_2 to G_1 , $E_b = 1000V$ DC; $E_c 2 = 275V$ DC;	1		-	Minutes	Plate Dissipation Air Flow, 45 C In- coming Air Tem- perature, mini-	500	400	300	Watts
$I_{\rm b} = 0.2$ A DC	_	14	-		mum	17.0	12.0	6.5	Cubic Feet
Peak Cathode Current† Direct Interelectrode	-	-	1.75	Amperes	Static Pressure, ap-				per Minute
Capacitances					proximate	0.9	0.5	0.2	Inches-
Cathode to Plate1	-	0.006	-	μµf					Water
Input, G2 tied to G1.		18.25	-	μμf	Radiator Hub Tem-				
Output, G2 tied to G1	-	6.4	-	μµf	perature, at Point Adjacent to Anode				-
	Mecha	nical			Seal.			250	C
Mounting Position—An Net Weight, approximat	y		1.0	Pounds	Screen-Grid to Con- trol-Grid, approxi-				
					mate	-	-	1	Cubic Feet per Minute
					Heater to Cathode,				Carles and
					approximate	-	_	1	Cubic Feet per Minute
					Ceramic Temperature at Any Point, maxi-				
					mum	-	-	200	C

RADIO-FREQUENCY POWER AMPLIFIER-CLASS B LINEAR

Carrier conditions per tube for use with a maximum modulation factor of 1.0

Aaximum Ratings		
DC Plate Voltage	2000	Volts
DC Grid-No. 2 Voltage	320	Volts
	0.250	Amperes
Plate Input.	500	Watts
Grid-No. 2 Input	5	Watts
Plate Dissipation	500	Watts

Typical Operation

Grounded-Grid Circuit at 225-400 Megacycles		
DC Plate Voltage	1750	Volts
DC Grid-No. 2 Voltage	250	Volts
DC Grid-No. 1 Voltage, approximate	-20	Volts
Peak RF Plate Voltage #, approximate	1250	Volts
Peak RF Grid-No. 1 Voltage #, approximate	40	Volts
DC Plate Current	0.200	Amperes
Zero Signal DC Plate Current (E. adjusted)	0.020	Amperes
DC Grid-No. 2 Current	0.005	Amperes
DC Grid-No. 1 Current	0.010	Amperes
Driving Power, approximate	5	Watts
Power Output V	110	Watts

Amperes Amperes Amperes Amperes Amperes Watts Watts Watts Watts

GL-6283 ET-T1050B Page 2

2-65

RADIO-FREQUENCY AMPLIFIER-CLASS B TELEVISION SERVICE Synchronizing-Level Conditions Per Tube Unless Otherwise Specified

Synchronizing-Leve	er Conditions Fer I	tube Unless Otherwise specified
Maximum Ratings, Absolute Values DC Plate Voltage 1600 Mi DC Grid-No. 2 Voltage 320 Mi DC Plate Current 0.400 Mi Plate Input. 600 Mi Grid-No. 2 Input. 15 Mi Plate Dissipation 500 Mi Grid-No. 1 Dissipation 2 Mi Typical Operation—Grounded-Grid Circuit up to 900 Me Bandwidth 6 Megacycles	ax Volts ax Amperes ax Watts ax Watts ax Watts ax Watts	DC Plate Current Synchronizing Level. 0.400 Pedestal Level. 0.295 DC Grid-No.2 Current (Pedesta lLevel) 0.007 DC Grid-No.1 Current Synchronizing Level 0.036 Pedestal Level. 0.016 Driving Power at Tube, approximate Synchronizing Level 25 Pedestal Level. .15 Power Output, approximate 15
DC Plate Voltage 1500 DC Grid-No. 2 Voltage 250 DC Grid-No. 1 Voltage -25 Peak RF Plate Voltage Synchronizing Level 1100 Pedestal Level 825 Peak RF Driving Voltage Synchronizing Level 35	Volts Volts Volts Volts Volts Volts	Synchronizing Level¶

Volts

RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY

Key-down conditions per tube without amplitude modulation \triangle

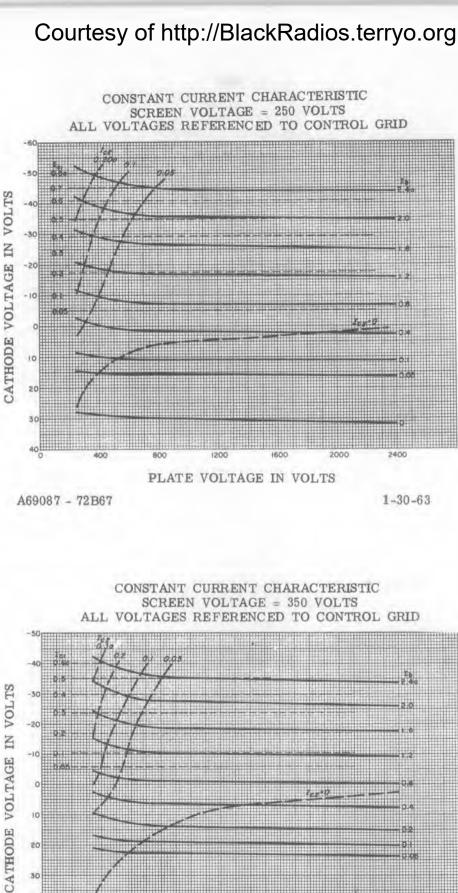
Maximum Ratings	900 Megacycles	400 Megacycle	95	Typical Operation Grounded-Grid Circuit at 900 Megacy	ycles		
DC Plate Voltage	1600	2000	Volts	DC Plate Voltage	1500	2000	Volts
DC Grid-No. 2 Voltage	320	320	Volts	DC Grid-No. 2 Voltage	210	225	Volts
DC Grid-No. 1 Voltage	-100	-100	Volts	DC Grid-No. 1 Voltage	-40	-40	Volts
DC Plate Current		0.300	Ampere	DC Plate Current	0.300	0.250	Ampere
DC Grid-No. 1 Current	0.050	0.050	Ampere	DC Grid-No. 2 Current,			
Plate Input	480	600	Watts	approximate	0.010	0.010	Ampere
Grid-No. 2 Input		15	Watts	DC Grid-No. 1 Current,			
Plate Dissipation	500	500	Watts	approximate	0.020	0.020	Ampere
Grid-No. 1 Dissipation		2	Watts	Driving Power, approximate Power Output, approximate ¶		15 300	Watts Watts

Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater-voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.

Represents maximum usable cathode current (plate current plus current to each grid) for any condition of operation. Measured with a 6-inch minimum diameter flat metal disk attached to the screen-grid ring. Control grid connected to the screen grid.

Output capacitances measured between anode and screen grid. Control grid connected directly to screen grid.

Forced-air cooling to be applied before and during the application of any voltages.


*Provision must be made for unobstructed passage of cooling air between radiator fins and between the anode terminal and adjacent radiator fin.

Useful power output as measured in output-circuit load.

Useful power output including power transferred from driver stage. Output circuit efficiency approximately 80 percent.

AModulation essentially negative may be used if the positive peak of the envelope does not exceed 115 percent of the carrier conditions.

GL-6283 ET-T1050B age 3 7.65

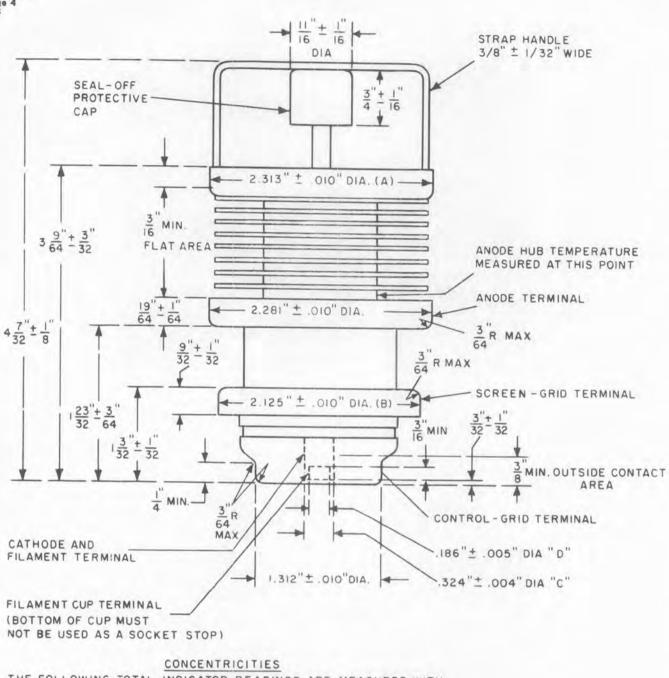
800

1200

1600

PLATE VOLTAGE IN VOLTS

2000


2400

40

50

1-30-63

THE FOLLOWING TOTAL INDICATOR READINGS ARE MEASURED WITH RESPECT TO A CENTERLINE DETERMINED BY THE CENTERS OF THE ANODE TERMINAL AND CONTROL GRID TERMINAL

GENERA

DIAMETER A-0.030 INCHES DIAMETER B-0.016 INCHES DIAMETER C-0.036 INCHES DIAMETER D-0.042 INCHES

TOTAL INDICATOR READING OF FILAMENT CUP TERMINAL DIAMETER (D) MEASURED WITH RESPECT TO CENTER OF CATHODE AND FILAMENT TERMINAL DIAMETER (C) - 0.016 INCHES

TUBE DEPARTMENT

ELECTRIC

K-69087-72A578

8-1 62

Planar Triode

TUBES

FOR GROUNDED-GRID CLASS A UHF AMPLIFIER APPLICATIONS

The 6299 is a high-mu, metal-and-ceramic triode intended for operation as a groundedgrid, Class A radio-frequency amplifier at frequencies as high as 3000 megacycles. Features of the tube include small size, planar electrode construction with close spacing, inherent rigidity, and an envelope structure convenient for coaxial circuit

applications.

At 1200 megacycles a noise figure of less than 8.5 decibels may be obtained when the 6299 is used in a grounded-grid coaxial circuit.

In radar receivers, or similar applications, where the grid of the tube may be driven positive by leakage pulses, consideration should be given to use of the 7644 in place of the 6299.

GENERAL

ELECTRICAL MECHANICAL Cathode - Coated Unipotential Operating Position - Any Heater Characteristics and Ratings Net Weight, approximate 1/6 Ounce Heater Voltage, AC or DC*. . . . 6.3±0.3 Volts Cooling - Conduction Heater Current‡ 0.3 Amperes Direct Interelectrode Capacitances§ Grid to Plate: (g to p) 1.75 pf Grid to Cathode and Heater: g to (h + k) 3.65 pf Plate to Cathode and Heater: p to (h + k) 0.015 pf MAXIMUM RATINGS ABSOLUTE-MAXIMUM VALUES Plate Voltage. Positive DC Grid Voltage . 200 Volts Negative DC Grid Voltage . 0 Volts . . . Plate Dissipation . . . 15 Volts DC Plate Current. . . . 2.0 Watts

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions

DC Grid Current#. . .

Envelope Temperature at Hottest Point.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

12

150

00

Milliamperes

Milliamperes

The tubes and arrangements disclosed herein may be covered by patents of General The tubes and arrangements ancrosed nervent may be corrected by purchase of contract Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an

express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

GENERAL 9 ELECTRIC

Supersedes ET-T1166D dated 12-61

Page 1 10-66

6299

CHARACTERISTICS AND TYPICAL OPERATION

A D A CTEDICTICS

AVERAGE CHARACIERIS	IIC.	5																	
Plate Voltage		-															1.0	. 175	Volts
Plate Voltage	•		•		•					1	1.1					1.2.			Volts
Grid Voltaget	•									•				1				110	1.122.020
Amplification Factor					•			•		•								7300	Ohms
Plate Resistance, approximate										•									Micromhos
Transconductance																			
Plate Current						10												. 10	Milliamperes
D1 Wilkers convoyingto T	b =	10	MIL	118	mpe	res													
Ec = 0 volts						12				1								. 125	Volts
CLASS A, RF AMPLIFIER	-0	GRO	DU	ND	ED	-G	RIC),	CO	A)	(A)	-T	YPI	C	IRC	UI.	1		
Frequency								1	450	0	120	00		1200)	1	200	3000	Megacycles
Frequency			•		1				***	k				**	k		175	**	Volts
Plate Voltage							1			2	30	00							Volts
Plate-Supply Voltage ++						1					1750								Ohms
Resistor in Plate Circuit (by	pas	sea.) .			1			(0	112	0			0		ৰাৰা	0	Volts
Grid Voltage§§									10	0		10		1			10	10	Milliamperes
Plate Current			1.0			1	1		10	0		10		1			10		Megacycles
Bandwidth, min										9		10		1			17	11	Decibels
Gain					14		1.4		17.	5		1/			·		8.5	13.2	Decibels
									4			2		8.					

NOTES

4.5

8.2

8.5

8.0

- * The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- Heater current of a bogey tube at Ef = 6.3 volts. +
- Without external shield. 8

Noise Figure, Power-Matched .

- Good thermal contact to the anode and cathode must be provided to conduct heat from the elements. The 9 anode contact must be sufficiently flexible to keep lateral force on the anode terminal at a minimum.
- The 6299 is rated only for Class A amplifier service. #
- Does not apply to initial-emission-velocity current. Δ
- Adjusted for Ib = 10 milliamperes. ¢
- Adjust for Ib = 10 milliamperes; range must be variable from 75 to 200 volts. **
- Supply should be regulated. ++
- For operation above 1000 megacycles, the minimum noise figure will generally be obtained by operation at zero bias. For operation below 1000 megacycles, the use of a cathode resistor or grid bias should 22 be evaluated for the particular application.
- Adjusted for Ib = 10 milliamperes; 200 ohm variable cathode resistor recommended.

INITIAL CHARACTERISTICS LIMITS

Heater Current Ef = 6.3 volts	Min. 280	Bogey Max. 300 320	Milliamperes
Plate Voltage Ef = 6.3 volts, Ec = 0 volts, Eb adjusted for Ib = 10 ma	75	125 175	Volts
Transconductance Ef = 6.3 volts, Eb = 175 volts, Ec adjusted for $Ib = 10 \text{ ma.}$.	. 11500	15000	Micromhos
Amplification Factor $Ef = 6.3 \text{ volts}$, $Eb = 175 \text{ volts}$, $Ec \text{ adjusted for Ib} = 10 \text{ ma}$.	. 85	110 140	
<pre>Interelectrode Leakage Resistance Ef = 6.3 volts, Polarity of applied d-c interelectrode voltage is such that no cathode emission results.</pre>			
Grid to Cathode and Heater at 45 volts d-c	. 0.25		Megohms
Grid to Plate at 500 volts d-c			Megohms
Interelectrode Capacitances			
Grid to Plate: (g to p)	1.5	1.75 2.0	Picofarads
Grid to Cathode and Heater: g to (h + k)	3.0	3.65 5.0	Picofarads
Plate to Cathode and Heater: p to $(h + k)$		0.015 0.025	Picofarads
SPECIAL PERFORMANCE	TESTS		
		Adding Adverse	

0

1

0

0

Ū

8

Noise Figure - 450 MC Ef = 6.3 volts, Ec = 0 volts, Eb adjusted for Ib = 10 ma, F = 450 \pm 5 MC .	Min.	and a second sec	Decibels
Noise Figure - 1200 MC Ef = 6.3 volts, Ec = 0 volts, Eb adjusted for Ib = 10 ma, F = 1200 \pm 5 MC .		8.5	Decibels
Noise Figure - 3000 MC Ef = 6.3 volts, Ec = 0 volts, Eb adjusted for Ib = 10 ma, F = 3000 \pm 5 MC .		13.5	Decibels
Power Gain - 450 Mc Ef = 6.3 volts, Ec = 0 volts, Eb adjusted for Ib = 10 ma, F = 450±5 MC, Bandwidth = 9 MC, min	15		Decibels
<pre>Power Gain - 1200 MC Ef = 6.3 volts, Ec = 0 volts, Eb adjusted for Ib = 10 ma, F = 1200±5 MC, Bandwidth = 10 MC, min.</pre>	15		Decibels
Power Gain - 3000 MC Ef = 6.3 volts, Ec = 0 volts, Eb adjusted for Ib = 10 ma, F = 3000±5 MC, Bandwidth = 10 MC, min.	10		Decibels

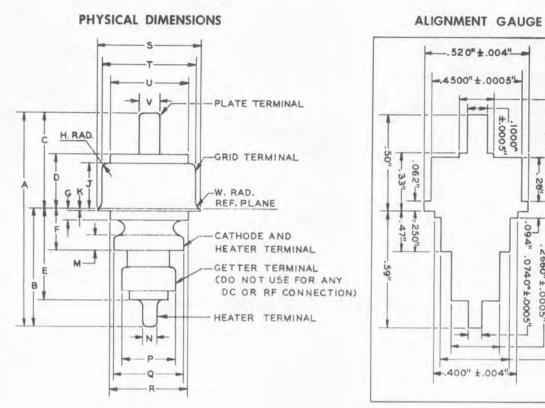
DEGRADATION RATE TESTS

1000-Hour Life Statistical sample operated for 1000 hours to evaluate changes in transconductance and noise figure with life.

.1000" ±.0005"

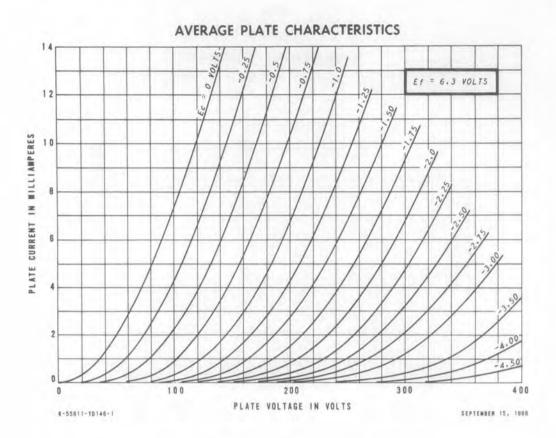
140"±.

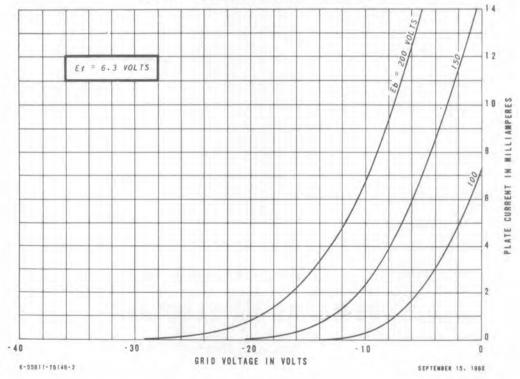
1.005


28

.094" .0740"±.0005"-

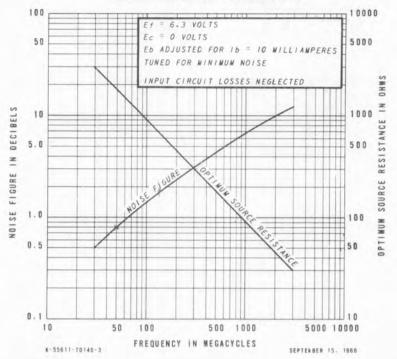
-


.3420"±.0005"-.2660"±.0005"-



Ref.	INCI	IES	MILLIN	TERS
Rei.	Minimum	Maximum	Minimum	Maximum
A	0.960	1.040	24.38	26.42
В	0.530	0.590	13.46	14.99
C	0.410	0.470	10.41	11.94
D		0.272		6.91
E		0.475		12.07
F	0.163	0.193	4.14	4.90
G		0.060		1.52
Н		0.030		0.76
J	0.190	0.210	4.83	5.33
K	0.009	0.015	0.23	0.38
М	0.040	0.070	1.02	1.78
N	0.059	0.065	1.50	1.65
Р		0.257		6.53
Q	0.326	0.334	8.28	8.48
R		0.385		9.78
S	0.483	0.497	12.27	12.62
Т	0.435	0.445	11.05	11.30
U		0.385		9.78
V	0.088	0.094	2.24	2.39
W		0.008		0.20

66



AVERAGE TRANSFER CHARACTERISTICS

Owensboro, Kentucky

6442 PLANAR TRIODE 6442 ET-T1167C Page 1 12-61

FOR GROUNDED-GRID OSCILLATOR AND AMPLIFIER SERVICE Metal and Ceramic Small Size

Two Kilowatts Useful Pulse Power Output

The 6442 is a high-mu, metal-and-ceramic triode intended for operation as a plate-pulsed, grounded-grid oscillator at frequencies as high as 5000 megacycles. The 6442 is also useful as a CW, radio-frequency power amplifier or frequency multiplier at frequencies as high as 2500 megacycles.

Features of the 6442 include small size, planar electrode construction with close spacing, inherent rigidity, an envelope structure convenient for coaxial circuit applications, and excellent resistance to vibration and shock.

GENERAL

ELECTRICAL

Cathode-Coated Unipotential	
Heater Characteristics and Ratings	
Heater Voltage, AC or DC *	Volts
Heater Current at Ef = 6.3 volts	Amperes
Direct Interelectrode Capacitances‡	
Grid to Plate: (g to p) 2.3	pf
Grid to Cathode: (g to k)	
Plate to Cathode: (p to k), max0.045	

MECHANICAL

MAXIMUM RATINGS

ABSOLUTE-MAXIMUM VALUES PLATE-PULSED OSCILLATOR SERVICE

Heater Voltage*	Volts
Cathode Heating Time, minimum60	Seconds
Frequency	Megacycles
Peak Positive-Pulse Plate Supply	
Voltage	Volts
Duty Factor of Plate Pulse¶ #0.001	
Pulse Duration	Microseconds
Plate Current	
Average #	Milliamperes
Average During Plate Pulse △ 2.5	

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of

Negative Grid Voltage Average During Plate Pulse	Volts
Grid Current	
Average # 1.25	Milliamperes
Average During Plate Pulse 1.25	
Plate Dissipation #	Watts
Peak Heater-Cathode Voltage	
Heater Positive with Respect to	
Cathode	Volts
Heater Negative with Respect to	
Cathode	Volts
Envelope Temperature at Hottest Point 175	C

all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

Supersedes ET-T1167B dated 3-60

6442 ET-T1167C Page 2 12-61

MAXIMUM RATINGS (Continued)

RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATO	R
CLASS C TELEGRAPHY	

Key-down Conditions per Tube Without Amplitude Modulation**

Heater Voltage*	Volts
Cathode Heating Time, minimum 30	Seconds
Frequency	Megacycles
DC Plate Voltage	Volts
Negative DC Grid Voltage	Volts
DC Plate Current	Milliamperes
DC Grid Current	Milliamperes
Plate Dissipation	Watts
Peak Heater-Cathode Voltage	
Heater Positive with Respect to	
Cathode	Volts
Heater Negative with Respect to	
Cathode	Volts
Envelope Temperature at Hottest Point 175	С

OSCILLATOR-
th a Maximum
Volts
Seconds
Megacycles
Volts
Volts
Milliamperes
Milliamperes
Watts
Volts
Volts
С

NO EDEOUENCY DOWED AMOULTED AN

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Heater Voltage	Volts	Amplification Factor	
Plate Voltage	Volts	Transconductance	Micromhos
Grid Voltage	Volts	Plate Current	Milliamperes

PLATE-PULSED OSCILLATOR

Frequency	5000	Megacycles
Heater Voltage	6.0	Volts
Duty Factor	0.001	
Pulse Duration	1.0	Microseconds
Pulse Repetition Rate	1000	Pulses per Second
Peak Positive-Pulse Plate		
Supply Voltage	3000	Volts
Negative Grid Voltage		
Average During Plate Pulse	75	Volts
Grid-Bias Resistor	50	Ohms
Plate Current		
Average	2.5	Milliamperes
Average During Plate Pulse	2.5	Amperes
Grid Current		
Average	1.25	Milliamperes
Average During Plate Pulse	1.25	Amperes
Useful Power Output		
Average	0.5	Watts
Average During Plate Pulse	0.5	Kilowatts

RADIO-FREQUENCY POWER AMPLIFIER-CLASS C TELEGRAPHY

Frequency	Megacycles
Heater Voltage	Volts
DC Plate Voltage	Volts
DC Plate Current	Milliamperes
DC Grid Current	Milliamperes
Driving Power	Watts
Useful Power Output	Watts

* The equipment designer should design the equipment so that heater voltage is centered at some value within the range of 4.5 to 5.7 volts for CW operation, or 5.7 to 6.3 volts for pulse operation. Heater voltage variations about the center value should be kept as small as practical and should not, in any case, exceed $\pm 5\%$. The optimum center value of heater voltage depends on the cathode current and on other parameters of circuit design and operation. For specific recommendations, contact your General Electric tube sales representative.

6442 ET-T1167C Page 3 12-61

- ^{\dagger} Heater current of a bogey tube at Ef = 6.3 volts.
- ‡ Measured in a special shielded socket.
- ¶ Applications with a duty factor greater than 0.001 should be referred to your General Electric tube sales representative for recommendations.
- #In any 5000 microsecond interval.

Ū

I

- △The regulation and/or series plate-supply impedance must be such as to limit the peak current, with the tube considered a short circuit, to a maximum of 25 amperes.
- **Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 percent of the carrier conditions.

INITIAL CHARACTERISTICS LIMITS

Min.	Bogey	Max.	
Heater Current			
Ef = 6.3 volts	900	960	Milliamperes
Grid Voltage Ef = 6.3 volts, Eb = 350 volts			
Ib=35 ma2.5	-4.25	-5.75	Volts
Transconductance Ef = 6.3 volts, Eb = 350 volts			
Ec adjusted for Ib = 35 ma	16500	19000	Micromhos
Amplification Factor Ef = 6.3 volts, Eb = 350 volts Ec adjusted for Ib = 35 ma.	50	65	
Negative Grid Current Ef = 6.3 volts, Eb = 350 volts Ec adjusted for Ib = 35 ma.		0.5	Microamperes
Interelectrode Leakage Resistance Ef = 6.3 volts, Polarity of applied d-c interelectrode volt- age is such that no cathode emission results			
Grid to Cathode at 100 volts d-c	1.3-1-0.1		Megohms
Grid to Plate at 500 volts d-c250	1. X. X. 1. X.	1.1.4.4.4	Megohms
Heater-Cathode Leakage Current Ef = 6.3 volts, Ehk = 100 volts			
Heater Positive with Respect to Cathode		100	Microamperes
Heater Negative with Respect to Cathode	A LAPL	100	Microamperes
Interelectrode Capacitances			
Grid to Plate: (g to p)	2.3	2.45	Picofarads
Grid to Cathode: (g to k)4.60	5.0	5.45	Picofarads
Plate to Cathode: (p to k)		0.045	Picofarads

6442 ET-T1167C Page 4 12-61

SPECIAL PERFORMANCE TESTS

	Min.	Max.	
Pulsed-Oscillator Power Output Tubes are tested for power output as an oscillator under the following			
conditions: Ef=6.0 volts; F=3450 MC, min.; epy=3000 volts; tp=			
1.0 μ sec. =10%; prr adjusted for Du = 0.001 ±5%; Rg adjusted for			
Ib=2.5 ma	1.75		Watts
Pulse Emission			
Tubes are tested for pulse emission under the following conditions: Ef =			
6.3 volts; tp =1 to 3 μsec.; Du =0.0005, min.; prr = 500 pps, max.; eb =			
ec and adjusted for is =8 amp	1244	175	Volts
Low Pressure Voltage Breakdown Test			
Statistical sample tested for voltage breakdown at a pressure of 250 mm			
Hg. Tubes shall not give visual evidence of flashover when 3000 volts			
RMS, 60 cps, is applied between the plate and grid terminals			
Low Pressure Voltage Breakdown Test			
Statistical sample tested for voltage breakdown at a pressure of 20 mm			

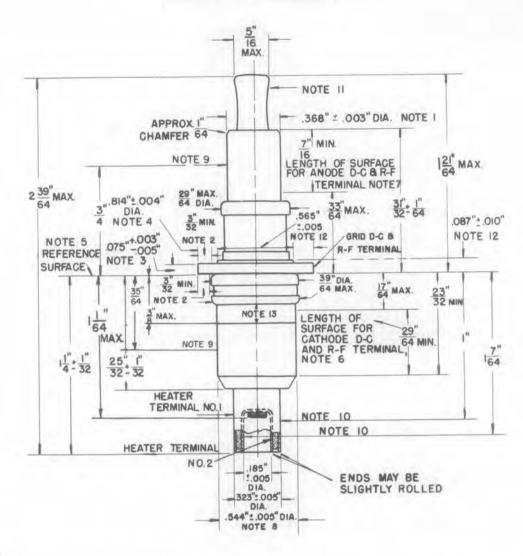
Hg. Tubes shall not give visual evidence of flashover when 500 volts RMS, 60 cps, is applied between the plate and grid terminals

DEGRADATION RATE TESTS

Shock

Statistical sample subjected to 5 impact accelerations of approximately 400 G and 1.0 milliseconds duration in each of four positions. The accelerating forces are applied by the Navy-type, High Impact (flyweight) Shock Machine.

500-Hour Life Test

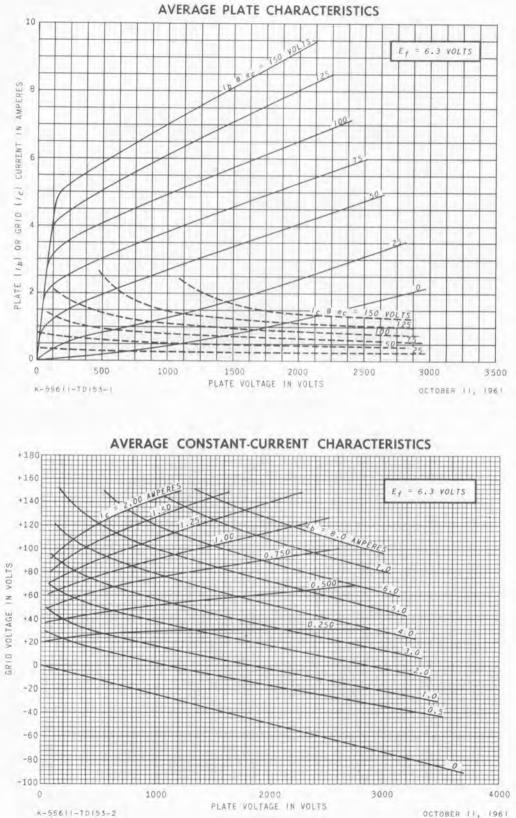

Statistical sample operated for 500 hours as a pulsed oscillator to evaluate changes in power output with life.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or

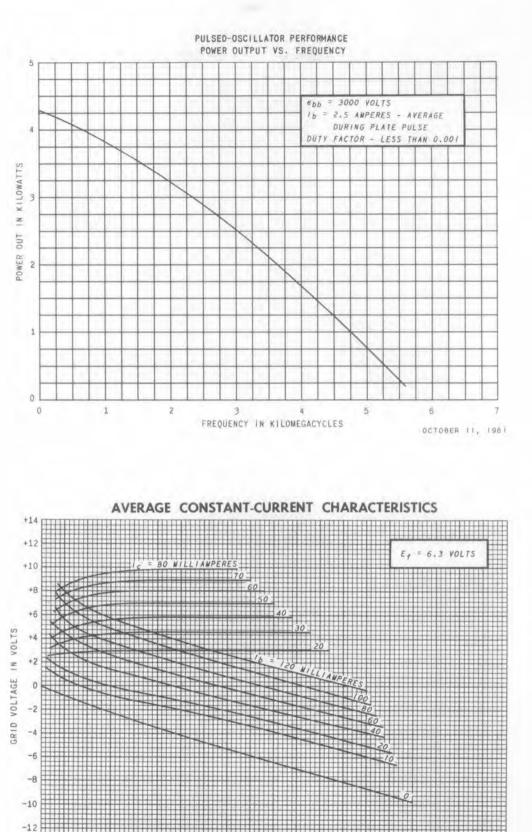
elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

PHYSICAL DIMENSIONS

6442 ET-T1167C Page 5 12-61



K-69087-72A684


4-59


- Note 1. Applies to minimum surface for anode d-c and r-f terminal only. Other surfaces must not be used for these terminal purposes.
- Note 2. Applies to minimum surface for grid d-c and r-f terminal only. Other surfaces, except for Notes 3 and 4, must not be used for terminal purposes.
- Note 3. Applies to minimum surfaces for grid d-c and r-f terminal only.
- Note 4. The cylindrical surface of this diameter may be used for grid d-c and r-f terminal purposes.
- Note 5. The surfaces defined by Notes 2, 3, and 4 shall be the only surfaces used for tube stops and clamping purposes.
- Note 6. Other surfaces shall not be used for cathode d-c and r-f terminal purposes.
- Note 7. Other surfaces shall not be used for anode d-c and r-f terminal purposes.
- Note 8. Applies to surface designated for cathode d-c and r-f terminal. Solder at brazed joint will not exceed the maximum diameter.
- Note 9. The maximum eccentricity of the anode and cathode with respect to the grid terminal in a prescribed jig is 0.010 (or maximum total runout of 0.020) and is measured by indicators at the points designated.
- Note 10. The maximum eccentricity of heater-terminal No. 1 and heater-terminal No. 2 with respect to the grid terminal in a prescribed jig is 0.015 (or maximum total runout of 0.030) and is measured by indicators at the points designated.
- Note 11. Exhaust tubulation must not be subjected to any mechanical stress.
- Note 12. For reference only. Dimension does not include any possible solder fillet.
- Note 13. This area is reserved for tube stamping and coding.

OCTOBER II, 1961

-14

0

6442 ET-T1167C Page 7 12-61

6442 ET-T1167C Page 8 12-61

> CW - AMPLIFIER PERFORMANCE POWER OUTPUT VS. FREQUENCY 5 $E_b = 300 \text{ VOLTS}$ 16 = 30 MILLIAMPERES 4 DRIVING POWER = 0.5 WATT IN WATTS POWER OUTPUT 1 DRIVE LEVEL 0 0 1 2 3 5 4 6 7 FREQUENCY IN KILOMEGACYCLES K-55611-TD153-5 OCTOBER 11, 1961

> > RECEIVING TUBE DEPARTMENT

GENERAL 🍪 ELECTRIC

Owensboro, Kentucky

6771 PLANAR TRIODE 6771 ET-T1518B Page 1 12-61

ELECTRONICS

FOR GROUNDED-GRID OSCILLATOR, AMPLIFIER, AND FREQUENCY MULTIPLIER SERVICE

Metal and Ceramic

Small Size

The 6771 is a high-mu, metal-and-ceramic triode intended for operation as a grounded-grid oscillator, radio-frequency power amplifier, or frequency multiplier at frequencies as high as 4000 megacycles. The 6771 is also useful as a plate-pulsed, grounded-grid oscillator at frequencies as high as 5000 megacycles.

Features of the 6771 include small size, planar electrode construction with close spacing, inherent rigidity, an envelope structure convenient for coaxial circuit applications, and excellent resistance to vibration and shock.

GENERAL

MECHANICAL

Mounting Position—Any Net Weight, approximate......0.9 Cooling—Conduction and Convection

Ounces

MAXIMUM RATINGS

Volts

pf

pf

pf

Amperes

ABSOLUTE-MAXIMUM VALUES

Cathode-Coated Unipotential

Heater Characteristics and Ratings

Heater Voltage, AC or DC

Direct Interelectrode Capacitances[‡] Grid to Plate: (g to p).....2.03

Heater Current at Ef = 6.3 volts....0.575†

Grid to Cathode: (g to k) 4.05

Plate to Cathode: (p to k) 0.018

RADIO-FREQUENCY AMPLIFIER-CLASS A

Heater Voltage*	Volts
DC Plate Voltage	
Negative DC Grid Voltage	Volts
DC Plate Current	Milliamperes
Plate Dissipation	Watts

ELECTRICAL

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of

 Peak Heater-Cathode Voltage

 Heater Positive with Respect to

 Cathode
 .90

 Volts

 Heater Negative with Respect to

 Cathode
 .90

 Volts

 Grid Circuit Resistance
 .90

 Megohms

 Envelope Temperature at Hottest Point.175
 C

all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

Supersedes ET-T1518A dated 3-60

6771 ET-T1518B Page 2 12-61

MAXIMUM RATINGS (Continued)

RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY

FREQUENCY MULTIPLIER

Key-Down Conditions per Tube Without a ulation §	Amplitude Mod-
Heater Voltage*	Volts
DC Plate Voltage	Volts
Negative DC Grid Voltage	Volts
DC Plate Current	Milliamperes
DC Grid Current	Milliamperes
Plate Dissipation	
Peak Heater-Cathode Voltage	
Heater Positive with Respect to	
Cathode	Volts
Heater Negative with Respect to	
Cathode	Volts
Grid Circuit Resistance0.1	Megohms
Envelope Temperature at Hottest Point, 175	C

RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR-CLASS C TELEPHONY

 Carrier Conditions per Tube for Use With a Maximum Modulation Factor of 1.0

 Heater Voltage*
 4.5 to 5.7
 Volts

 DC Plate Voltage
 250
 Volts

 Negative DC Grid Voltage
 25
 Volts

 DC Plate Current
 22
 Milliamperes

 DC Grid Current
 8.0
 Milliamperes

 Plate Dissipation
 5.0
 Watts

 Peak Heater-Cathode Voltage
 90
 Volts

 Heater Negative with Respect to
 90
 Volts

 Grid Circuit Resistance
 0.1
 Megohms

 Envelope Temperature at Hottest Point 175
 C

Heater Voltage*	Volts
DC Plate Voltage	Volts
Negative DC Grid Voltage	Volts
DC Plate Current	Milliamperes
DC Grid Current	Milliamperes
Plate Dissipation	Watts
Peak Heater-Cathode Voltage	
Heater Positive with Respect to	
Cathode	Volts
Heater Negative with Respect to	i ores
Cathode	Volts
Grid Circuit Resistance	
Envelope Temperature at Hottest Point 175	C

PLATE-PULSED OSCILLATOR SERVICE

Heater Voltage*	Volts
Cathode Heating Time, minimum	Seconds
Frequency 5000 Peak Positive-Pulse Plate Supply	Megacycles
Voltage	Volts
Pulse Duration	Microseconds
Average #	Milliamperes
Average During Plate Pulse △1.25 Negative Grid Voltage	Amperes
Average During Plate Pulse	Volts
Average #	Milliamperes
Peak Heater-Cathode Voltage Heater Positive with Respect to	
Cathode	Volts
Cathode	
Envelope Temperature at Hottest Point 175	C

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Heater Voltage	Volts
Plate Voltage	Volts
Grid Voltage, approximate	Volts
Amplification Factor	
Transconductance	Micromhos
Plate Current	Milliamperes
a shall as a shall be shall be shall be shall be	

RADIO-FREQUENCY	OSCILLATOR
-----------------	------------

Frequency	Megacycles
Heater Voltage	Volts
DC Plate Voltage	Volts

DC Plate Current	Milliamperes Milliwatts
FREQUENCY MULTIPLIER-DOUBLER TO 100	0 MEGACYCLES

Heater Voltage	Volts
DC Plate Voltage	Volts
DC Plate Current	Milliamperes
DC Grid Voltage	Volts
DC Grid Current	Milliamperes
	Milliwatts
Power Output	Watts

- * The equipment designer should design the equipment so that heater voltage is centered at some value within the range of 4.5 to 5.7 volts for CW operation, or 5.7 to 6.3 volts for pulse operation. Heater voltage variations about the center value should be kept as small as practical and should not, in any case, exceed $\pm 5\%$. The optimum center value of heater voltage depends on the cathode current and on other parameters of circuit design and operation. For specific recommendations, contact your General Electric tube sales representative.
- † Heater current of a bogey tube at Ef = 6.3 volts.
- ‡ Measured in a special shielded socket.
- § Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 percent of the carrier conditions.
- ¶ Applications with a duty factor greater than 0.001 should be referred to your General Electric tube sales representative for recommendations.
- #In any 5000 microsecond interval.

0

 \triangle The regulation and/or series plate-supply impedance must be such as to limit the peak current, with the tube considered a short circuit, to a maximum of 12.5 amperes.

Min.	Bogey	Max.	
Heater Current Ef = 6.3 volts	575	620	Milliamperes
Grid Voltage Ef = 6.3 volts, Eb = 250 volts, Ib = 25 ma0.90	-1.60	-2.65	Volts
Grid Voltage Ef = 6.3 volts, Eb = 250 volts, Ib = 2 ma2.00	-3.50	- 5.40	Volts
Transconductance Ef = 6.3 volts, Eb = 250 volts, Ec adjusted for Ib = 25 ma	23000	27500	Micromhos
Amplification Factor Ef = 6.3 volts, Eb = 250 volts, Ec adjusted for Ib = 25 ma60	90	120	
Negative Grid Current Ef = 6.3 volts, Eb = 250 volts, Ec adjusted for Ib = 25 ma		0.35	Microamperes
Interelectrode Leakage Resistance Ef = 6.3 volts, Polarity of applied d-c interelectrode voltage is such that no cathode emission results Grid to Cathode at 100 volts d-c	144141		
Heater-Cathode Leakage Current Ef = 6.3 volts, Ehk = 100 volts Heater Positive with Respect to Cathode Heater Negative with Respect to Cathode		100	Microamperes
Interelectrode Capacitances Grid to Plate: (g to p)	2.03 4.05 0.018	2.30 4.55 0.024	Picofarads Picofarads Picofarads

INITIAL CHARACTERISTICS LIMITS

6771 ET-T1518B Page 4 12-61

SPECIAL PERFORMANCE TESTS

 Min.
 Max.

 Oscillator Power Output
 Min.
 Max.

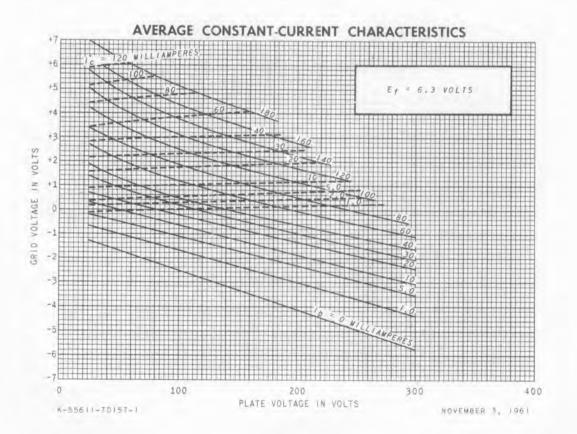
 Tubes are tested for power output as an oscillator under the following conditions: Ef = 4.5 volts; F = 4000 MC, min.; Eb = 275 volts, Ec adjusted for Ib = 25 ma.
 200
 Milliwatts

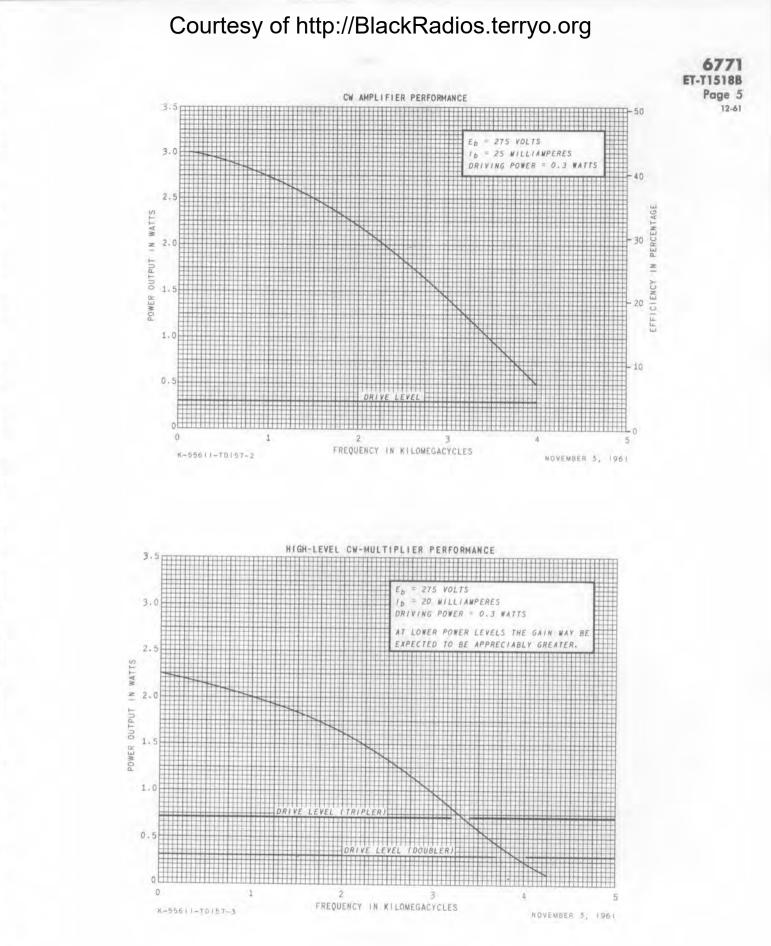
 Low Pressure Voltage Breakdown Test Statistical sample tested for voltage breakdown at a pressure of 20 mm Hg. Tubes shall not give visual evidence of flashover when 500 volts RMS,
 Min.
 Max.

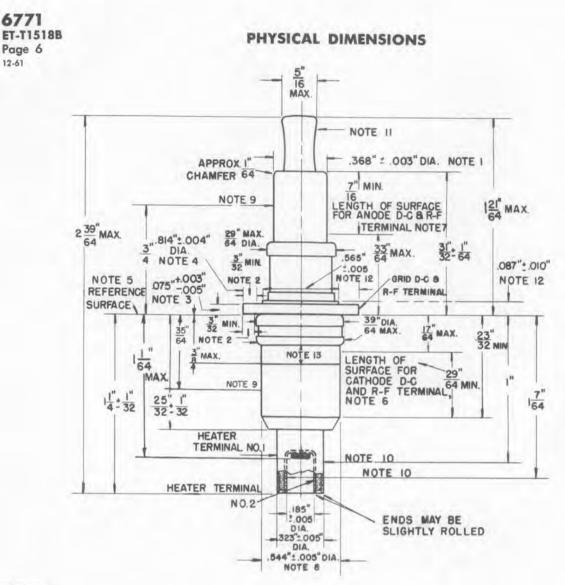
60 cps, is applied between the plate and grid terminals.

DEGRADATION RATE TESTS

Shock


Statistical sample subjected to 5 impact accelerations of approximately 400 G and 1.0 milliseconds durationin each of four positions. The accelerating forces are applied by the Navy-type, High Impact (flyweight) Shock Machine.


1000-Hour Life Test


Statistical sample operated for 1000 hours as an oscillator to evaluate changes in power output with life.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or

elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

K-69087-72A684

12-61

Note 1. Applies to minimum surface for anode d-c and r-f terminal only. Other surfaces must not be used for these terminal purposes.

2. Applies to minimum surface for grid d-c and r-f terminal only. Other surfaces, except for Notes 3 and 4, must not be Note used for terminal purposes.

- Note 3. Applies to minimum surfaces for grid d-c and r-f terminal only.
- Note 4. The cylindrical surface of this diameter may be used for grid d-c and r-f terminal purposes.
- Note 5. The surfaces defined by Notes 2, 3, and 4 shall be the only surfaces used for tube stops and clamping purposes.
- Note 6. Other surfaces shall not be used for cathode d-c and r-f terminal purposes.
- Note 7. Other surfaces shall not be used for anode d-c and r-f terminal purposes.

Note 8. Applies to surface designated for cathode d-c and r-f terminal. Solder at brazed joint will not exceed the maximum diameter.

The maximum eccentricity of the anode and cathode with respect to the grid terminal in a prescribed jig is 0.010 (or Note 9. maximum total runout of 0.020) and is measured by indicators at the points designated.

Note 10. The maximum eccentricity of heater-terminal No. 1 and heater-terminal No. 2 with respect to the grid terminal in a prescribed jig is 0.015 (or maximum total runout of 0.030) and is measured by indicators at the points designated.

- Note 11. Exhaust tubulation must not be subjected to any mechanical stress.
- Note 12. For reference only. Dimension does not include any possible solder fillet.
- Note 13. This area is reserved for tube stamping and coding.

RECEIVING TUBE DEPARTMENT

Owensboro, Kentucky

4.50

GL-6848 ET-T1658B Page 1 2-65

GL-6848

VHF-UHF RING-SEAL CONSTRUCTION

FORCED-AIR COOLED METAL AND CERAMIC

GROUNDED-GRID CIRCUIT

The GL-6848 is a four-electrode transmitting tube featuring a metal-andceramic envelope for use as a power amplifier or oscillator in grounded-grid circuits with both grids maintained at radio-frequency ground potential. The output circuit is connected between the anode and the screen grid. The anode is capable of dissipating 2 kilowatts. Cooling is accomplished by forced air with the radiator an integral part of the anode. The cathode is a unipotential thoriatedtungsten cylinder, heated by electron bombardment. Maximum ratings apply up to 800 megacycles, although higher frequency operation is possible.

In narrow band, Class C, groundedgrid, amplitude-modulated service, the GL-6848 has a useful carrier-power output in excess of one kilowatt. In Class C Telegraphy, it has a useful power output of 3.0 kilowatts of continuous power as an amplifier or oscillator.

Electrical

Mechanical

Mounting Position-Vertical, Anode-end Up

Mir	nimum	Bogey	Maximu	m
Cathode				
Heater Voltage Heater Current at 7.0 Volts Without Cathode Bom-		6.7	7.0	Volts
barding With 150 Watts Cathode		14.5		Amperes
Bombarding Heater Starting Current		13.5	25	Amperes Amperes
Heater Cold Resistance Cathode Bombarding		0.041		Ohms
Power* Cathode Bombarding Voltag	e, DC	170	195	Watts
For 170 Watts Bombard- ing Power. For 195 Watts Bombard-		650	-	Volts
ing Power Cathode Heating Time	1	700		Volts Minutes
Amplification Factor, G_2 to G_1 , $E_b = 4000$ volts, $I_b = 0.5$				
Ampere		20		
Peak Cathode Current ‡			6	Amperes
Direct Interelectrode Capacitan	nces			
Cathode to Plate§	-	0.01	-	μµf
Input, G2 tied to G1	-	27.8	-	μμf
Output, G ₂ tied to G ₁ ¶	_	б.4	_	μµf

Ther	ma	I
pe of Cooling Forced Air		
Air Flow	48 0.8 15 7.5	Percent Cubic Feet per Minute Inches Min Cubic Feet per Minute Min Cubic Feet per Minute Min Cubic Feet per Minute
acoming Air Temperature node Hub Temperature eramic Temperature at Any Point emperature at Any Other Point	180 200	Max C Max C Max C Max C
a re	Percentage Rated Plate Dissipation 100 80 Air Flow 120 70 Static Pressure 3.2 1.5 Screen-grid to Control-grid Seals. Heater-to-Cathode Seals Anode Ceramic. coming Air Temperature ode Hub Temperature at Any Point. mperature at Any Other Point	Percentage Rated Plate Dissipation 100 80 60 Air Flow. 120 70 48 Static Pressure 3.2 1.5 0.8 Screen-grid to Control-grid Seals. 15 Heater-to-Cathode Seals 7.5 Anode Ceramic. 10 coming Air Temperature 45 node Hub Temperature 180 eramic Temperature at Any Point. 200 emperature at Any Other

Forced-air cooling to be applied before and during the application of any voltages. Air flow on heater-to-cathode seals must be maintained for one minute after removal of heater voltage. The air duct can be constructed so that air is forced along the anode seal and ceramic through the anode contact fingers to accomplish the anode ceramic and anode seal cooling. The volume of cooling air indicated is approximate only. Distribution of cooling air will vary with configuration of the cavity about the tube.

GL-6848 ET-T1658B Page 2 2-65

PLATE MODULATED RADIO-FREQUENCY AMPLIFIER-CLASS C TELEPHONY

Carrier Conditions With a Maximum Modulation Factor of 1.0, Screen Modulation Required

Maximum Ratings, Absolute Values

DC Plate Voltage 4500	Volts
DC Grid-No. 2 Voltage 500	Volts
DC Grid-No. 1 Voltage120	Volts
DC Plate Current. 0.80	Ampere
DC Grid-No. 1 Current 0.120	Ampere
Plate Input 3.60	Kilowatts
Grid-No. 2 Input	Watts
Plate Dissipation 2.0	Kilowatts

Typical Operation Grounded-grid Circuit a

Grounded-grid Circuit at 400 Megacycles	
DC Plate Voltage 4000	Volts
DC Grid-No. 2 Voltage	Volts
DC Grid-No. 1 Voltage	Volts
Peak RF Plate Voltage	Volts
Peak RF Driving Voltage	Volts
DC Plate Current 0.570	Ampere
DC Grid-No. 2 Current. 0.020	Ampere
DC Grid-No. 1 Current, approximate 0.100	Ampere
Driving Power, approximate	Watts
Power Output#	Watts
Output Circuit Efficiency	Percent
Cathode Bombarding Power*	Watts
Cathode Bombarding Voltage, approx. 630	Volts
Cathode Bombarding Current, approx. 0.260	Ampere

RADIO-FREQUENCY AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY

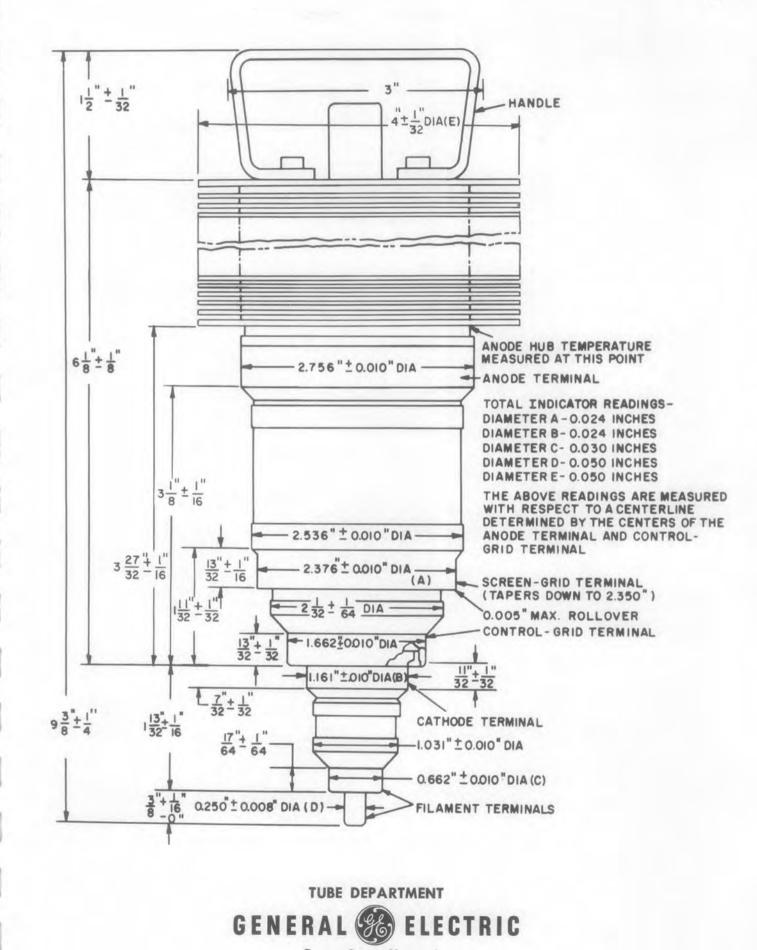
Key Down Conditions per Tube Without Amplitude Modulation

Maximum Ratings, Absolute Values		Plate Dissipation	Kilowatts	
DC Plate Voltage	Volts	DC Grid-No. 1 Voltage 120	Volts	
DC Grid-No. 2 Voltage	Volts	DC Grid-No. 1 Current 0.150	Ampere	
DC Plate Current 1.0	Amperes			
Plate Input . 6.0	Kilowatts			
Grid-No. 2 Input 40	Watts			

Typical Operation

DC Grid-No. 2 Voltage 600 DC Grid-No. 1 Voltage -120 Peak RF Plate Voltage, approximate 3000 Peak RF Grid-No. 1 Voltage 140 DC Plate Current 0.66 DC Grid-No. 2 Current 0.018 DC Grid-No. 1 Current 0.080 Driving Power, approximate 100 Power Output, approximate 1800 Output Circuit Efficiency 90 Cathode Bombarding Power* 160 Cathode Bombarding Voltage, approximate 610 Cathode Bombarding Current. 610	140 0.8 0.025 0.100 100 3200 90 165	Volts Volts Ampere Ampere Ampere Watts Watts	DC Grid-No. 2 Voltage600DC Grid-No. 1 Voltage-120Peak RF Plate Voltage, approximate3000Peak RF Grid-No. 1 Voltage140DC Plate Current0.6DC Grid-No. 2 Current0.018DC Grid-No. 1 Current0.080Driving Power, approximate90Power Output, approximate#1250Output Circuit Efficiency83Cathode Bombarding Power*150Cathode Bombarding Voltage, approximate 600600Cathode Bombarding Current, approximate 0.250	Volts Volts Ampere Ampere Watts Watts Percent Watts Volts
approximate	630	Volts	Cathole Domoarding Current, approximate 0.250	Ampere
approximate 0.260	0.260	Ampere		

The cathode of the GL-6848, because of transit-time effects which raise the temperature of the cathode, is subjected to considerable back bombardment in ultra-high-frequency service. The amount of heating due to bombardment is a function of the operating conditions and frequency, and must be compensated for by a reduction of the cathode power input to prevent overheating of the cathode with resulting short life. In any case it is important from a tube life standpoint to keep the cathode power at as low a level as possible consistent with required performance. Bombarder power should be monitored by a suitable wattmeter or DC voltmeter and milliammeter arrangement. For long life, the tube should be put in operation with about 180 watts bombarding power. After the circuit has been adjusted for proper tube operation, bombarding voltage should be reduced to a value slightly above that at which circuit performance is affected. Minor circuit readjustment may be necessary after the above adjustment. The procedure for determining proper bombarding power should be repeated periodically.


‡ Represents maximum usable cathode current (plate current plus current to each grid) for any condition of operation.

§ Measured with complete isolation between cathode and plate.

- ¶ Output capacitance measured between anode and screen grid. Control grid connected directly to screen grid.
- # Useful power output including power transferred from driver stage.

6897

PLANAR TRIODE

6897 ET-T1303C Page 1

DESCRIPTION AND RATING

FOR GROUNDED-GRID OSCILLATOR AND AMPLIFIER SERVICE

Metal and Ceramic High Transconductance Low Interelectrode Capacitances Shock Resistant

100 Watts Plate Dissipation

The 6897 is a metal-and-ceramic, high-mu triode designed for use as a grounded-grid oscillator or amplifier at frequencies as high as 2500 megacycles.

Features of the 6897 include planar electrode construction, high plate dissipation capability, excellent electrode isolation, low radio-frequency losses, high transconductance, and low interelectrode capacitances.

GENERAL

Volts

pf

pf

pf

Amperes

MECHANICAL

Mounting Position—Any—Only Plate Flan	nge to be Used as a
Socket Stop and Clamp	
Net Weight, approximate	2 Ounces
Cooling	
Plate and Plate Seal-Conduction and I	Forced Air
Grid and Cathode Seals-Conduction an	nd Forced Air
Recommended Air Flow Cowling-157-JA	AN
Recommended Air Flow on Plate Radia	tor at Sea Level
Incoming Air Temperature 25C,	
Plate Dissipation	
100 Watts	Cu. Ft./Min.

MAXIMUM RATINGS

ABSOLUTE-MAXIMUM VALUES

Cathode—Coated Unipotential Heater Characteristics and Ratings Heater Voltage, AC or DC.....

Heater Current at Ef = 6.3 volts.....1.03[†]

Grid to Cathode: (g to k) 6.5

Plate to Cathode: (p to k) 0.023

Direct Interelectrode Capacitances[‡] Grid to Plate: (g to p).....2.01

ELECTRICAL

Key-down Conditions per Tube Without Amplitude Modulation §

Heater Voltage*	Volts
DC Plate Voltage	Volts
Negative DC Grid Voltage	Volts
Peak Positive RF Grid Voltage	Volts
Peak Negative RF Grid Voltage400	Volts
DC Grid Current	Milliamperes
DC Cathode Current	Milliamperes
Plate Dissipation	Watts
Grid Dissipation	Watts
Envelope Temperature at Hottest Point # . 25	0 C

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of

Carrier Conditions per Tube for Use With a Maximum Modulation Factor of 1.0

Heater Voltage*	Volts
DC Plate Voltage¶	
Negative DC Grid Voltage	Volts
Peak Positive RF Grid Voltage	Volts
Peak Negative RF Grid Voltage400	Volts
DC Grid Current	Milliamperes
DC Cathode Current	Milliamperes
Plate Dissipation	Watts
Grid Dissipation2.0	Watts
Envelope Temperature at Hottest	
Point #	C

all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

6897 ET-T1303C Page 2 12-61

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

RADIO-FREQUENCY OSCILLATOR-CLASS C

Heater Voltage		Frequency	2500	Megacycles
Plate Voltage		Heater Voltage		
Grid Voltage △	Volts	DC Plate Voltage		
Amplification Factor		DC Plate Current	90	Milliamperes
Transconductance		DC Grid Current	27	Milliamperes
Plate Current	Milliamperes	DC Grid Voltage40	-22	Volts
		Useful Power Output 40	17	Watts

* The equipment designer should design the equipment so that heater voltage is centered at some value within the range of 4.5 to 6.3 volts. Heater voltage variations about the center value should be kept as small as practical and should not, in any case, exceed $\pm 5\%$. The optimum center value of heater voltage depends on the cathode current and on other parameters of circuit design and operation. For specific recommendations, contact your General Electric tube sales representative.

^{\dagger} Heater current of a bogey tube at Ef = 6.3 volts.

‡ Measured in a special shielded socket.

§ Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 percent of the carrier conditions.

*Where long life and reliable operation are important, lower envelope temperatures should be used.

I For modulation factors less than 1.0, a higher d-c plate voltage may be used if the sum of the peak positive audio voltage and the d-c plate voltage does not exceed 1200 volts.

 \triangle Adjusted for Ib = 75 milliamperes.

INITIAL CHARACTERISTICS LIMITS

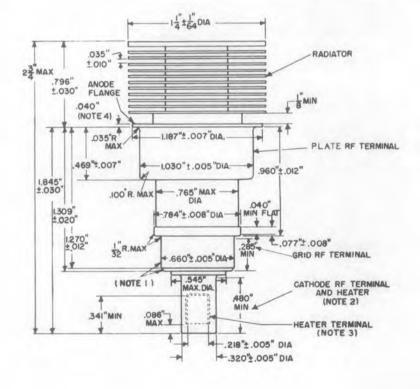
Min.	Bogey	Max.	
Heater Current			
Ef = 6.3 volts 950	1030	1100	Milliamperes
Grid Voltage			
Ef = 6.3 volts, $Eb = 600$ volts, $Ib = 75$ ma -1.3	-2.5	-3.5	Volts
Grid Voltage			
Ef = 6.3 volts, Eb = 600 volts, Ib = 1.0 ma	-9.5	-15	Volts
Transconductance			
Ef = 6.3 volts, $Eb = 600$ volts, Ec adjusted for $Ib = 75$ ma	24800	27500	Micromhos
Amplification Factor			
Ef = 6.3 volts, $Eb = 600$ volts, Ec adjusted for $Ib = 75$ ma	95	115	
Negative Grid Current			
Ef = 6.3 volts, $Eb = 600$ volts, Ec adjusted for $Ib = 75$ ma		3.0	Microamperes
Interelectrode Leakage Resistance			
Ef=6.3 volts, Polarity of applied d-c interelectrode voltage			
is such that no cathode emission results			Sec. in
Grid to Cathode at 500 volts d-c50	$-1, -2, -3, 1, \dots,$	1	Megohms
Interelectrode Capacitances			
Grid to Plate: (g to p)	2.01	2.13	Picofarads
Grid to Cathode: (g to k). 6.0	6.5	7.0	Picofarads
Plate to Cathode: (p to k)	0.023	0.029	Picofarads

6897 Page 31 10-62

SPECIAL PERFORMANCE TESTS

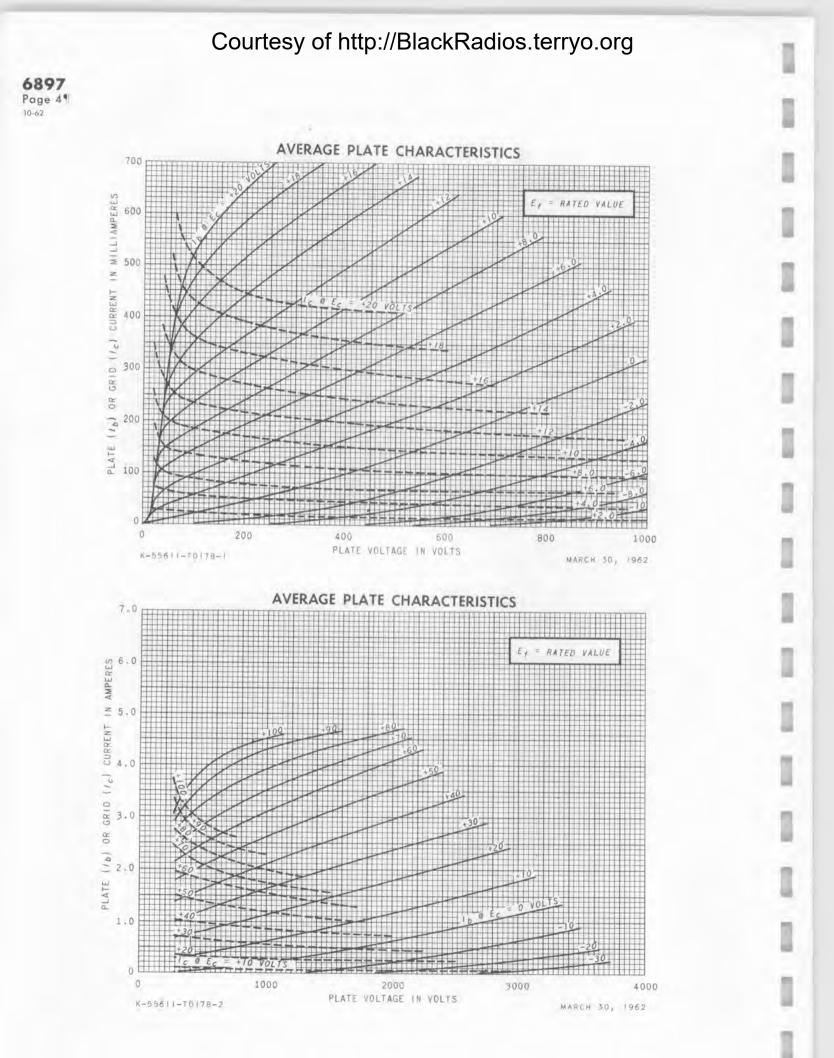
	Min.	Max.		
Oscillator Power Output				
Tubes are tested for power output as an oscillator under the following	g			
conditions: Ef=5.0 volts; F=2500 MC, min.; Eb=1000 volts; Ib=				
90 ma			Watts	
Low Pressure Voltage Breakdown Test				
Statistical sample tested for voltage breakdown at a pressure of 27 mm	1			
Hg. Tubes shall not give visual evidence of flashover when 1000 volt				
RMS, 60 cps, is applied between the plate and grid terminals				

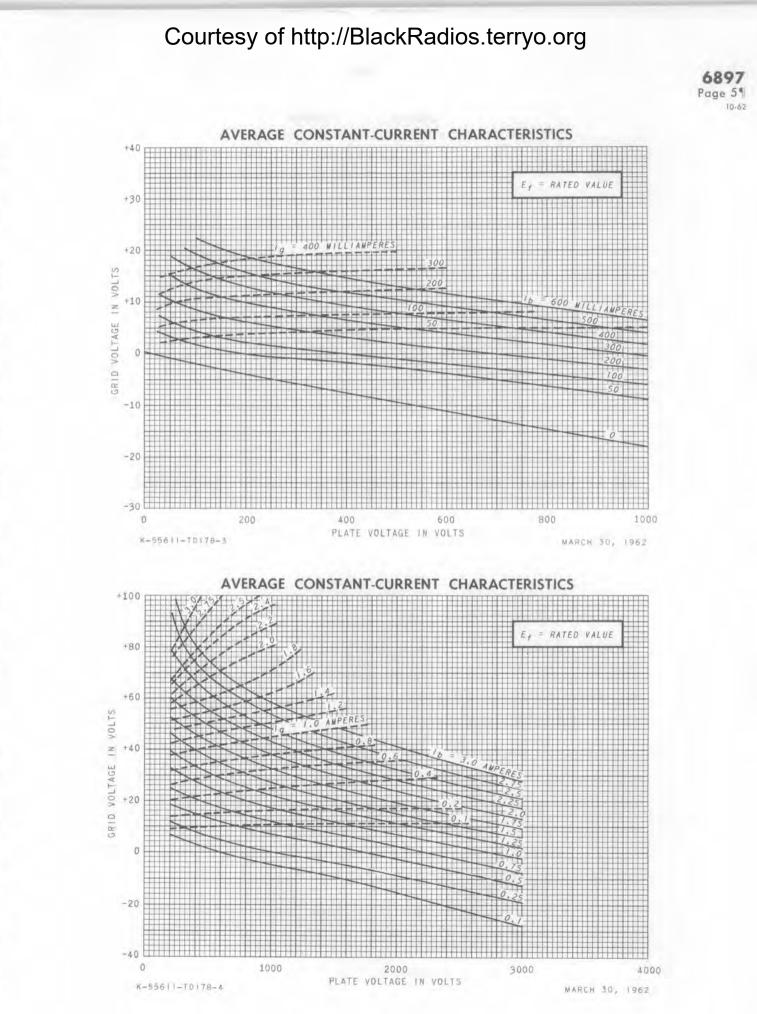
DEGRADATION RATE TESTS


Shock

Statistical sample subjected to 5 impact accelerations of approximately 400 G and 1.0 milliseconds duration in each of four positions. The accelerating forces are applied by the Navy-type, High Impact (flyweight) Shock Machine.

500-Hour Life Test


Statistical sample operated for 500 hours as an oscillator to evaluate changes in power output with life.


The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

NOTES:

- Solder not to extend radially beyond grid RF terminal.
- Total indicated runout of the grid-contact surface and the cathode-contact surface with respect to the anode shall not exceed 0.020".
- Total indicated runout of the cathode-contact surface with respect to the heater-contact surface shall not exceed 0.012".
- Only this flange to be used as a socket stop and clamp.
- ¶ New pages 3 to 6 supersede pages 3 and 4 dated 12-61.

Courtesy of http://BlackRadios.derryo.org ET-T1384C ELECTRONIC

INNOVATIONS

Page 1 9-67

TUBES

IN ACTION

ONE KILOWATT UHF TELEVISION OUTPUT FORCED-AIR COOLED METAL AND CERAMIC UHF TETRODE INTEGRAL RADIATOR **GROUNDED-GRID CIRCUITS** THORIATED-TUNGSTEN CATHODE

The GL-6942 is a four-electrode transmitting tube featuring a metal-andceramic envelope designed for use as a power amplifier or oscillator in groundedgrid circuits with both grids maintained at radio-frequency ground potential. The output circuit is connected between the anode and the screen grid. The anode is capable of dissipating one and one half kilowatts. Cooling is accomplished by forced air with the radiator an integral part of the anode. The cathode is indirectly heated thoriated tungsten. Maximum ratings apply up to 1000 megacycles.

When used as a Class B grounded-grid broadband television amplifier this tube has a useful synchronizing peak-power output of one kilowatt at 900 megacycles; in narrow band Class C service the output is one kilowatt of continuous power as an amplifier or oscillator. Because of its ratings, the tube is also well adapted to use in dielectric-heating equipment.

High operating efficiency is assured because of the small size and close spacing of the tube electrodes, the ring-seal construction, and the low-loss factor due to the silver-plated external parts and the ceramic insulators. In addition, the grounded-grid construction eliminates the necessity for neutralization in a properly designed circuit. The small size of the GL-6942 permits compact mounting, and the ring-seal construction allows quick plug-in installation.

Electrical

	Mini- mum	Bogey	Maxi-	
Heater Voltage*,		5.7	6.0	Volts
Heater Current at 5.7 Volts	22	24	26	Amperes
Heater Starting Current	-	-	36	Amperes
Heater Cold Resistance	-	0.02	-	Ohms
Cathode Heating Time	1	-	-	Minutes
$\begin{array}{l} \mbox{Amplification Factor, } G_{1} \\ \mbox{to } G_{1}, Eb = 2000 \mbox{ Volts,} \\ I_{b} = 0.200 \mbox{ Ampere, } E_{c}2 = \\ 475 \mbox{ Volts.} \end{array}$	12	17	22	
Peak Cathode Current†	-	-	3.0	Amperes
Direct Interelectrode Ca- pacitances				
Cathode to Plate 1	-	-	0.006	μµf
Input, G2 tied to G1	15.5	17.0	18.5	μµf
Output, G_2 tied to G_1 §.	5.0	5.5	6.0	μµf

Mechanical

Moun	ting Po	sition	 	 1.1	17	 		Any
Net V	Veight,	approximate.	 	 	11	 	.3.6	Pounds

Thermal

Air Flow¶ Through Radiator—See drawing for air duct form on page 3.		
Plate Dissipation	1.5	Kilowatts
Air Flow	60 Min	Cubic Feet per Minute
Static Pressure	1.5	Inches Water
Heater-to-Cathode Seals		Cubic Feet per Minute
Screen-Grid to Control-		
Grid Seals Anode to Screen-Grid	4 Min	Cubic Feet per Minute
Ceramic Insulator	6 Min	Cubic Feet per Minute
Incoming Air Temperature.	45 Max	
Radiator Hub Temperature at Fin Adjacent to Anode		
Seal	180 Max	C
Ceramic Temperature at		
Any Point	200 Max	С

Forced-air cooling to be applied before and during the application of any voltages. Forced-air cooling must be maintained for one minute after the removal of all voltages.

Supersedes ET-T1384B dated 2-65

GL-6942 ET-T1384C Page 2 9-47

RADIO-FREQUENCY AMPLIFIER-CLASS B TELEVISION SERVICE

Synchronizing-Level Conditions per Tube Unless Otherwise Specified

Volts Volts	Peak RF Driving Voltage Synchronizing Level	Volts Volts
Amperes Kilowatts Watts	DC Plate Current Synchronizing Level 0.520 Pedestal Level 0.360	Amperes Amperes
	DC Grid-No. 2 Pedestal Level	Amperes
acycles	DC Grid-No. 1 Current	
	Synchronizing Level	Amperes
Volts		
Volts	Synchronizing Level 100	Watts
Volts	Pedestal Level 25	Watts
Volts		Watts
Volts	Pedestal Level	Watts
	Volts Amperes Kilowatts Watts Kilowatts acycles Volts Volts Volts Volts Volts	VoltsSynchronizing Level110VoltsPedestal Level70AmperesDC Plate CurrentKilowattsSynchronizing Level0.520WattsPedestal Level0.360KilowattsDC Grid-No. 2Pedestal Level0.035ocyclesDC Grid-No. 1 CurrentSynchronizing Level0.035VoltsDriving Power at Tube, approximateVoltsSynchronizing Level100VoltsPedestal Level25Power Output, approximateSynchronizing Level1000

PLATE-MODULATED RADIO-FREQUENCY POWER AMPLIFIER-CLASS C TELEPHONY

Carrier Conditions with a Maximum Madulation Factor of 1.0

Maximum Ratinas, Absolute Values

muximum karings, Absolute values	Typical Operation, Grounded-Grid Circuit up to 900 Meg	acycles
DC Plate Voltage	DC Plate Voltage	Volts
DC Grid-No. 2 Voltage	DC Grid-No. 2 Voltage	Volts
DC Grid-No. 1 Voltage	DC Grid-No. 1 Voltage	Volts
DC Plate Current	Peak RF Plate Voltage	Volts Volts
Dc Grid-No. 1 Current	DC Plate Current 0.25	Amperes
Plate Input 1.12 Max Kilowatts	s DC Grid-No. 2 Current0.01	Amperes
Grid-No. 2 Input 10 Max Watts	DC Grid-No. 1 Current, approximate0.047	Amperes
Plate Dissipation	Driving Power, approximate 38 Power Output 565	Watts Watts

RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY

Key-Down Conditions per Tube without Amplitude Modulation

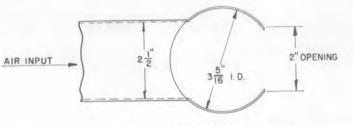
Maximum Ratings, Absolute Values		Typical Operation-Grounded-Grid Circuit at 1000	Megacycles,
DC Plate Voltage4000 MaxDC Grid-No. 2 Voltage600 MaxDC Grid-No. 1 Voltage-150 MaxDC Plate Current0.7 MaxDC Grid-No. 1 Current0.10 MaxPlate Input2.5 MaxGrid-No. 2 Input25 MaxPlate Dissipation1.5 Max	Volts Volts Amperes Amperes Kilowatts Watts	¼λ Output DC Plate Voltage. 4000 DC Grid-No. 2 Voltage 500 DC Grid-No. 1 Voltage -110 DC Plate Current 0.42 DC Grid-No. 2 Current 0.011 DC Grid-No. 1 Current, approximate 0.055 Driving Power, approximate 65 Power Output, usefulφ 1000	Volts Volts Volts Amperes Amperes Watts Watts

^{*} The cathode of the GL-6942 because of transit-time effects which raise the temperature of the cathode, is subjected to considerable back bombardment in ultra-high-frequency service. The amount of heating due to bombardment is a function of the operating conditions and frequency, and must be compensated for by a reduction of the heater input to prevent overheating of the cathode with resulting short life. For long life, the GL-6942 should be put in operation with rated heater voltage. After the circuit has been adjusted for proper tube operation the heater voltage should be reduced to a value slightly above that at which circuit performance is affected. At a frequency of 900 megacycles and with typical operating conditions the heater voltage can be reduced to approximately 5.3 volts. At lower frequencies, the reduction will be less. Minor curcuit readjustment may be necessary after this adjustment.

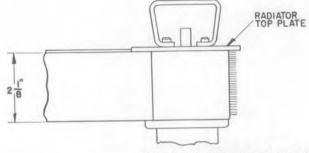
Represents maximum useable cathode current (plate current plus current to each grid) for any condition of operation.

[‡] Measured with complete external shielding between cathode and anode.

§ Output capacitance measured between anode and screen grid. Control grid connected directly to screen grid.

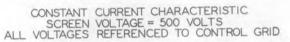

The volume of cooling air indicated for the various seals is for sea-level conditions and approximate only. Distribution of cooling air will vary with the cavity configuration about the tube. For most staisfactory operation the maximum temperature of any point on the tube should be below 200 C.

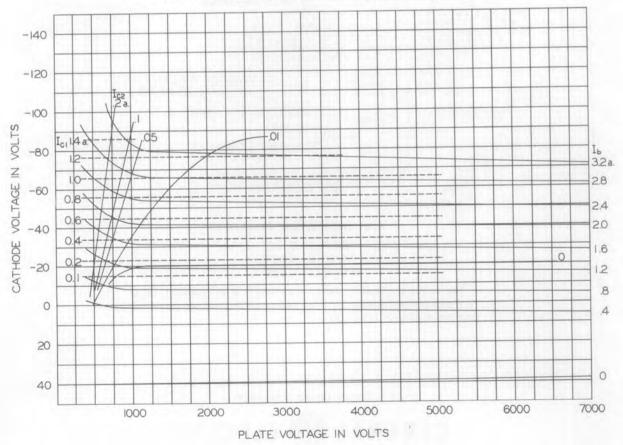
 ϕ Useful power output including power transferred from driver stage.


The carrier of the driver modulated 100 percent.

Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 percent of the carrier conditions.

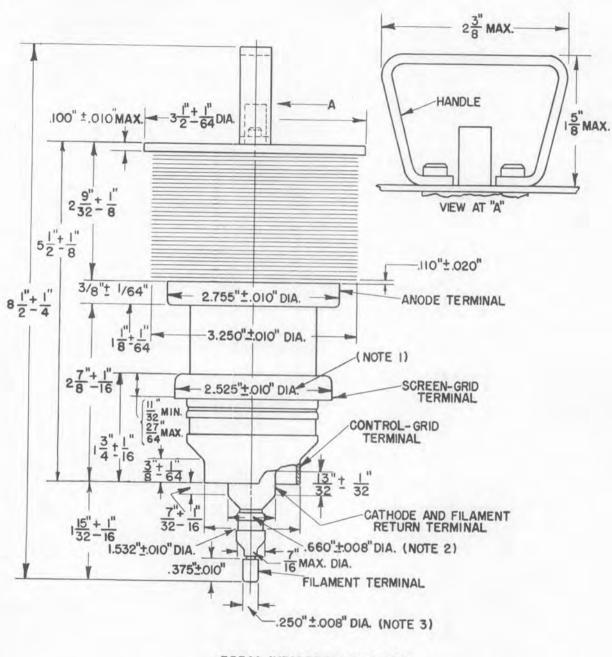
BLOWER DUCT


TOP VIEW



SIDE VIEW (WITH TUBE IN PLACE)

K-69087-72A592


8-29-56

GL-6942 ET-T1384C Page 3 9.67

GL-6942 ET-T1384C Page 4 9-67

TOTAL INDICATOR READINGS NOTE 1: 0.020"

NOTE 2: 0.030" NOTE 3: 0.060"

The above readings are measured with respect to a centerline determined by the centers of the anode terminal and control-grid terminal.

TUBE DEPARTMENT GENERAL BEECTRIC Schenectady, New York 12305

7077 Page 1 10-62

METAL-CERAMIC TRIODE

FOR UHF AMPLIFIER APPLICATIONS

-DESCRIPTION AND RATING-

The 7077 is a high-mu triode of ceramic and metal planar construction primarily intended for use as an r-f amplifier in the UHF range. It features an extremely low noise figure throughout its frequency range. The 7077 is especially suited for use where unfavorable conditions of mechanical shock, mechanical vibration, and nuclear radiation are encountered.

GENERAL

Volts

pf

pf

pf

Amperes

MECHANICAL

Mounting Position-Any

See Outline Drawing on page 3 for dimensions and electrical connections

MAXIMUM RATINGS

ABSOLUTE-MAXIMUM VALUES

tions.

Cathode-Coated Unipotential

Heater Characteristics and Ratings

Direct Interelectrode Capacitances!

Heater Current † 0.24

Grid to Plate: (g to p) 1.0

Input: g to (h+k).....1.7

Heater to Cathode: (h to k) 1.1 pf

Plate Voltage	Volts
Positive Peak and DC Grid Voltage0	Volts
Negative Peak and DC Grid Voltage50	Volts
Plate Dissipation	Watts
DC Cathode Current	Millian
Heater-Cathode Voltage	

ELECTRICAL

Cathode Current. 11 Milliamperes ater-Cathode Voltage Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable condi-

The tube manufacturer chooses these values to provide

acceptable serviceability of the tube, making no allowance

for equipment variations, environmental variations, and the

effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of

 Heater Positive with Respect to

 Cathode
 .50
 Volts

 Heater Negative with Respect to

 Cathode
 .50
 Volts

 Envelope Temperature§
 .250
 C

 Grid-Circuit Resistance
 .0.01
 Megohms

all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or

elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

Supersedes ET-T1488 dated 3-58 and 10-59

Transconductance

7077 Page 2 10-62

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Plate Supply Voltage	Volts	
Resistor in Plate Circuit (bypassed) 18000	Ohms	
Cathode-Bias Resistor	Ohms	
Amplification Factor		
Plate Resistance, approximate	Ohms	

GROUNDED-GRID AMPLIFIER-450 MEGACYCLES

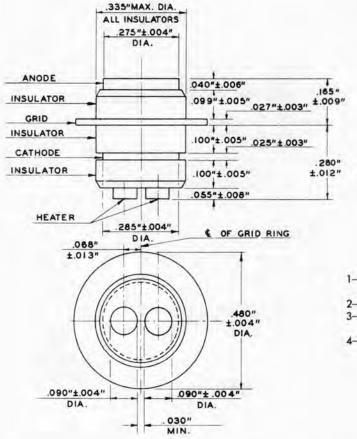
Plate Supply Voltage¶	Volts
Resistor in Plate Circuit (bypassed) 18000	Ohms
Cathode-Bias Resistor	
Plate Current	
Bandwidth, approximate	

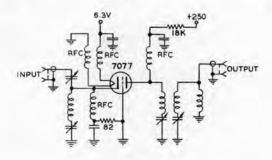
Plate Current	. 6.5	Milliamperes
Grid Voltage, approximate Gm = 50 Micromhos	5	Volts

10000 Micromhos

Power Gain, approximate 14.5	Decibels
Noise Figure (Measured with power-	
matched input, using argon lamp	
noise source), approximate	Decibels

FOOTNOTES


- * The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- † Heater current of a bogey tube at Ef = 6.3 volts.
- Measured using a grounded adapter that provides shielding 1 between external terminals of tube.
- § Operation below the rated maximum envelope temperature is recommended for applications requiring the longest


OUTLINE DRAWING

possible tube life. The 7077 is also capable of operation at envelope temperatures much higher than the rated maximum values. For specific recommendations concerning higher temperature operation, contact your General Electric tube sales representative.

Lower supply voltage and a lower value of resistor may be used in the plate circuit with some sacrifice in uniformity of performance.

TYPICAL GROUNDED-GRID AMPLIFIER CIRCUIT USING THE 7077

- 1-Maximum eccentricity of anode, grid, and cathode 0.005" from center line.
- 2-Maximum eccentricity of insulators 0.010" from center line.
- -Center line of grid ring used as reference line for horizontal tolerances.
- -Bottom surface of grid ring used as reference line for vertical tolerances.

INITIAL CHARACTERISTICS LIMITS

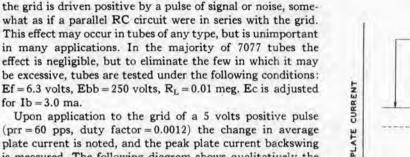
Min.

Bogey

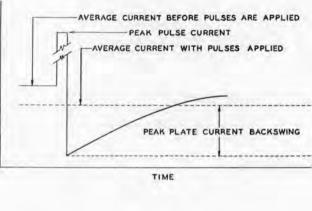
Max.

	Min.	Bogey	max.	
Heater Current				
Ef = 6.3 volts	222	240	258	Milliamperes
Plate Current				
$Ef = 6.3$ volts, $Ebb = 250$ volts, $R_L = 18000$ ohms, $Rk = 82$ ohms				
(bypassed)	4.5	6.5	8.5	Milliamperes
Transconductance				
$Ef = 6.3$ volts, $Ebb = 250$ volts, $R_L = 18000$ ohms (bypassed),				
Rk = 82 ohms (bypassed)	7000	10000	13000	Micromhos
Transconductance Change with Heater Voltage				
Difference between Transconductance measured at $Ef = 6.3$ and $Ef = 6.0$ volts (other conditions the same) expressed as a per-				
centage			20	Percent
Amelifaction Proton				
Amplification Factor				
$Ef = 6.3$ volts, $Ebb = 250$ volts, $R_L = 18000$ ohms (bypassed), Rk = 82 ohms (bypassed)	65	90	115	
Interelectrode Capacitances	0.04	1.00	1.16	Discourse
Grid to Plate: (g to p)	0.84	1.00 1.70	1.16 2.15	Picofarads Picofarads
Input: g to (h+k) Output: p to (h+k)				Picofarads
Heater to Cathode: (h to k) \cdots	0.80	0.010 1.10	1.40	
Heater-Cathode Leakage Current				
Ef = 6.3 volts, $Ehk = 100$ volts				
Heater Positive with Respect to Cathode			20	Microamperes
Heater Negative with Respect to Cathode			20	Microamperes
Interelectrode Leakage Resistance				
Ef = 6.3 volts, Polarity of applied d-c interelectrode voltage is				
such that no cathode emission results.				
Grid to All at 100 volts d-c.	100			Megohms
Plate to All at 300 volts d-c.				Megohms
Grid Emission Current				
Ef = 7.0 volts, $Ebb = 250$ volts, $Ecc = -20$ volts, $Rk = 82$ ohms				
(by passed), Rg = 0.1 meg, $R_{\rm L}$ = 18000 ohms (by passed)		a a sa	2.0	Microamperes
SPECIAL PERFORMANCE	CE TES	STS		
	Min.	Bogey	Max.	
Noise Figure		Dodea	mux.	
Ef = 6.3 volts, Ebb = 250 volts, $Rk = 82$ ohms, $R_L = 18000$ ohms,				
F = 450 mc		5.5	6.6	Decibels
Noise Figure at Reduced Heater Voltage				
$Ef = 6.0$ volts, $Ebb = 250$ volts, $Rk = 82$ ohms, $R_L = 18000$ ohms,				
F = 450 mc			8.1	Decibels
Power Gain				
$Ef = 6.3$ volts, $Ebb = 250$ volts, $Rk = 82$ ohms, $R_L = 18000$ ohms,				
F = 450 mc	12.5	14.5		Decibels

7077 Page 4 10-62


SPECIAL PERFORMANCE TESTS (Continued)

Grid Recovery


Change in Average Plate Current..... Peak Plate Current Backswing

Tubes with poor grid recovery affect circuit operation, when

PLATE CURRENT VS. TIME GRID RECOVERY TEST

(prr = 60 pps, duty factor = 0.0012) the change in average plate current is noted, and the peak plate current backswing is measured. The following diagram shows qualitatively the plate current-time relationship for a tube (with poor grid recovery) subjected to this test.

Low Frequency Vibrational Output.

Statistical sample is subjected to vibration in each of two planes at 40 cps, with peak acceleration 15G. Tube is

Variable Frequency Vibrational Output

The tube is designed to be free of vibrational outputs in excess of 15 my RMS at any frequency within the range 100-2000 cps, when vibrated in either of two planes at 10G

Low Pressure Voltage Breakdown Test

Statistical sample tested for voltage breakdown at a pressure of 8mm Hg, to simulate an altitude of 100,000 feet. Tubes shall not give visual evidence of flashover or corona operated with Ef = 6.3 volts, Ebb = 150 volts, Rk = 82 ohms (bypassed), $R_L = 10000$ ohms.

Max.

10 Millivolts RMS

Bogey

peak acceleration. Electrical conditions for this test are the same as for Low Frequency Vibrational Output.

when 300 volts RMS, 60 cps, is applied between the plate and grid terminals.

Fatigue

DEGRADATION RATE TESTS

Statistical sample vibrated for a total of 96 hours, 48 hours in each of two planes, at a peak acceleration of 10G. Frequency is 60 cps. Tubes are operated during the test with Ef = 6.3 volts (no other voltages applied). Following the test, tubes are evaluated for low frequency vibrational output, heater-cathode leakage, heater current, noise figure, and gain.

Shock

Min.

Statistical sample subjected to 5 impact accelerations of approximately 450G in each of four positions. The accelerating forces are applied by the Navy-type, High Impact (flyweight) Shock Machine using a 30° hammer angle. Tubes are operated during the test with Ef = 6.3 volts, Eb = 150 volts, Ehk = +100 volts, and Rk = 82 ohms. Following the test, tubes are evaluated for low frequency

^{0.6} Milliamperes 1.0 Milliamperes

DEGRADATION RATE TESTS (Continued)

vibrational output, heater-cathode leakage, heater current, noise figure, and gain.

Stability Life Test

Statistical sample operated under Intermittent Life Test conditions is evaluated for percent change in transconductance of individual tubes, from the initial reading to readings following 2 hours and 20 hours of the life test.

Survival Rate Life Test

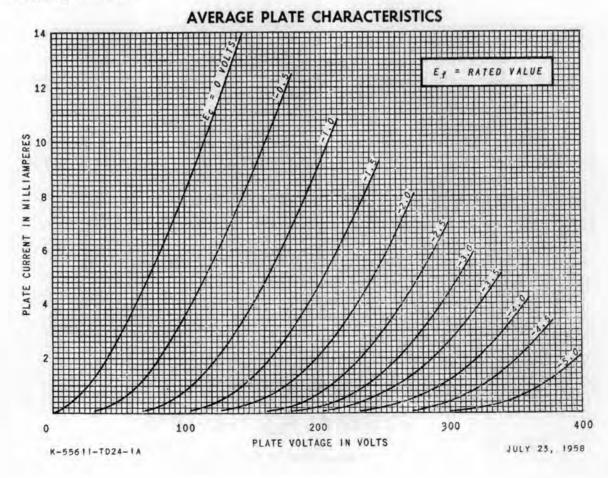
Statistical sample operated under Intermittent Life Test conditions is evaluated for shorted and open elements, transconductance, and noise figure following approximately 100 hours of life test.

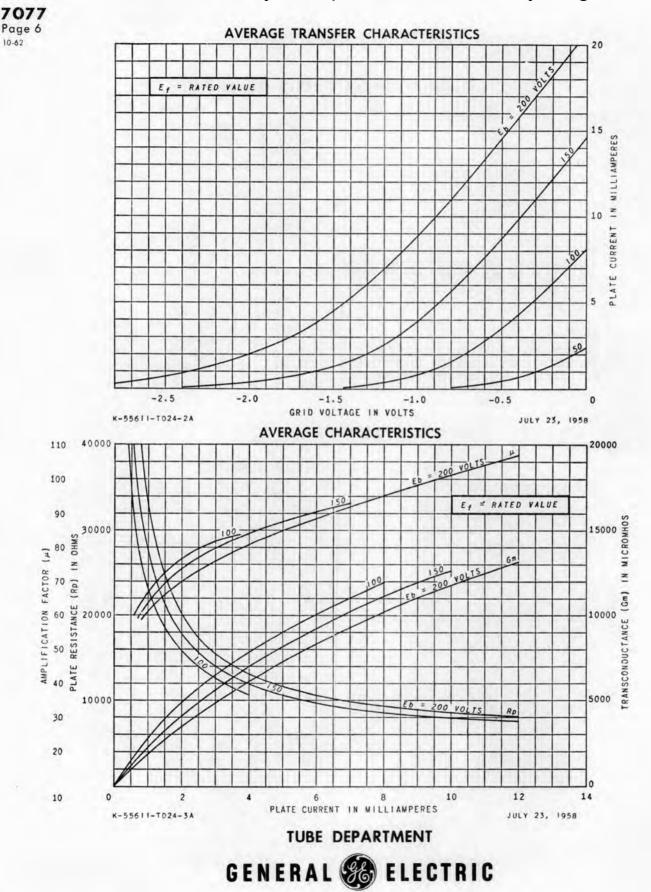
Intermittent Life Test

Statistical sample operated for 1000 hours under the following conditions: Ef = 6.3 volts (cycled—on 1¾ hours, off l_4 hour), Ebb = 300 volts, Ehk = +70 volts d-c, Rk = 82 ohms, R_L = 18000 ohms, and Rg = 0.1 meg. Tubes are evaluated, following 500 and 1000 hours of life test, for shorted or open elements, heater current, transconductance, noise figure, gain, heater-cathode leakage, and interelectrode leakage resistance.

High-Temperature Intermittent Life Test

Statistical sample operated for 1000 hours under Intermittent Life Test conditions except that minimum envelope temperature shall be 250C. Tubes are evaluated, following 500 and 1000 of life test, for shorted or open elements, heater current, transconductance, heater-cathode leakage, and interelectrode leakage resistance.


Interface Life Test


Statistical sample operated for 1000 hours with Ef = 6.6 volts, no other voltages applied, and evaluated for cathode interface resistance following the life test.

Heater-Cycling Life Test

Statistical sample operated for 2000 cycles minimum to evaluate and control heater-cathode defects. Conditions of test include Ef = 7.0 volts cycled for one minute on and one minute off, Eb = Ec = 0 volts, and Ehk = 70 volts with heater positive with respect to cathode. Following this test, tubes are evaluated for open heaters, heater-cathode shorts, and heater-cathode leakage current.

Note: The conditions for some of the indicated tests have deliberately been selected to aggravate tube failures for test and evaluation purposes. In no sense should these conditions be interpreted as suitable operating conditions.

Owensboro, Kentucky

7266

7266 Page 1 10-62

METAL-CERAMIC DIODE

DESCRIPTION AND RATING

The 7266 is a cathode-type diode of ceramic-and-metal planar construction. It is intended for detector, high-frequency instrument probe, and lowcurrent rectifier applications. The 7266 is especially suited for use where unfavorable conditions of mechanical shock, mechanical vibration, and nuclear radiation are encountered.

GENERAL

ELECTRICAL

Cathode Coated Unipotential Heater Characteristics and Ratings Heater Voltage, AC or DC* 6.3 ±0.3 Volts Heater Current +... Direct Interelectrode Capacitances‡ Plate to Cathode: (p to k) 1.0 pf Heater to Cathode: (h to k) 1.3 pf

MECHANICAL

Mounting Position-Any

See Outline Drawing on page 3 for dimensions and electrical connections

MAXIMUM RATINGS

ABSOLUTE-MAXIMUM VALUES

Peak Inverse Plate Voltage	Volts
Steady-State Peak Plate Current	Milliamperes
DC Output Current	Milliamperes
Heater-Cathode Voltage	

Heater Positive with Respect to

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of

Heater Negative with Respect to Envelope Temperature at Hottest

all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

AVERAGE CHARACTERISTICS

Tube Voltage Drop

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or

elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

Supersedes 7266 Description & Rating sheet dated 6-59

AVERAGE CHARACTERISTICS (Continued)

FOOTNOTES

* The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.

† Heater current of a bogey tube at Ef = 6.3 volts.

‡ Measured using a grounded adapter that provides shielding between external terminals of tube.

Operation below the rated maximum envelope temperature is recommended for applications requiring the longest possible tube life. The 7266 is also capable of operation at envelope temperatures much higher than the rated maximum values. For specific recommendations concerning higher temperature operation, contact your General Electric tube sales representative.

INITIAL CHARACTERISTICS LIMITS

	Min.	Bogey	Max.	
Heater Current	100	215	232	Milliamperes
Ef = 6.3 volts.	198	215	202	wimamperes
Tube Voltage Drop	0.4	1.0	2.0	Volts
Ef = 6.3 volts, Eb adjusted for Ib = 1.0 ma	0.4	1.0	2.0	VOILS
Tube Voltage Drop at Reduced Heater Voltage				17-14-
Ef = 5.7 volts, Eb adjusted for $Ib = 1.0$ ma	12.0		2.3	Volts
Emission				* *****
Ef = 6.3 volts, $Eb = 9$ volts d-c	10	1.11		Milliamperes
Plate Current				
$Ef = 6.3$ volts, $Ebb = 0$ volts, $R_L = 40000$ ohms.	2	8	16	Microamperes
Interelectrode Capacitances			12	
Plate to Cathode: (p to k)	0.7	1.0	1.3	Picofarads
Heater to Cathode: (h to k)	0.9	1.3	1.7	Picofarads
Heater-Cathode Leakage Current				
Ef = 6.3 volts, $Ehk = 100$ volts				
Heater Positive with Respect to Cathode	10.0		20	Microamperes
Heater Negative with Respect to Cathode			20	Microamperes
Interelectrode Leakage Resistance				
Ef=6.3 volts. Polarity of applied d-c interelectrode voltage is				
such that no cathode omission results.				
Plate to A11 at 500 volts d-c	10000	3.11		Megohms
Trate to first we over the a state of the				

SPECIAL PERFORMANCE TESTS

Low Pressure Voltage Breakdown Test Statistical sample tested for voltage breakdown at a pressure of 8mm Hg, to simulate an altitude of 100000 feet. Tubes shall not give visual evidence of flashover or corona when 300 volts RMS, 60 cps, is applied between the plate and cathode terminals.

7266 Page 3 10-62

DEGRADATION RATE TESTS

Fatigue

Statistical sample vibrated for a total of six hours, three hours in each of two planes, at a peak acceleration of 10G. Frequency is continuously varied from 30 cps to 2000 cps and back to 30 cps, with a period of ten minutes. Tubes are operated during the test with Ef = 6.3 volts and Ehk = +100 volts. Following the test, tubes are evaluated for heater-cathode leakage and heater current.

Shock

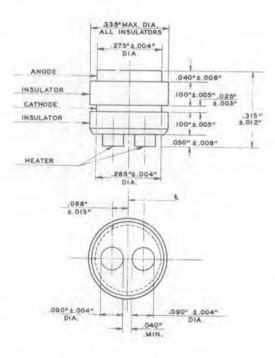
Statistical sample subjected to 5 impact accelerations of approximately 450G in each of four positions. The accelerating forces are applied by the Navy-type, High Impact (flyweight) Shock Machine using a 30° hammer angle. Tubes are operated during the test with Ef = 6.3 volts and Ehk = +100 volts. Following the test, tubes are evaluated for heater-cathode leakage and heater current.

Survival Rate Life Test

The combined statistical samples subjected to the Intermittent and Standby Life Tests are evaluated for shorted and open elements and tube voltage drop following approximately 100 hours of life test.

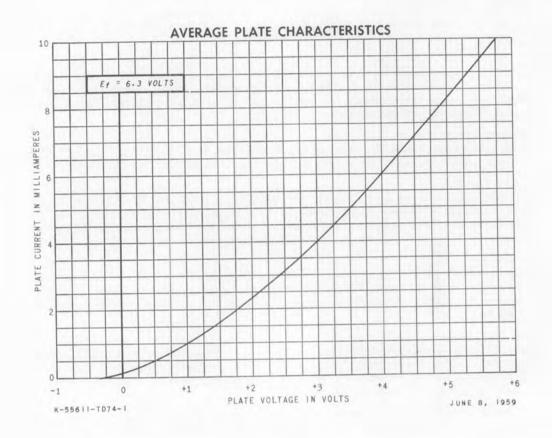
Intermittent Life Test

Statistical sample operated for 1000 hours under the following conditions: Ef = 6.3 volts (cycled—on 1³/₄ hours, off ¹/₄ hour), Ebb = 220 volts RMS, Ehk = -70 volts d-c, $R_L = 0.13$ meg, $C_L = 1.0 \ \mu$ f, and Rs = 1300 ohms. Tubes are evaluated, following 500 and 1000 hours of life test, for shorted or open elements, heater current, tube voltage drop, heater-cathode leakage, interelectrode leakage resistance, and emission.


Standby Life Test

Statistical sample operated for 1000 hours under the following conditions: Ef = 6.3 volts (cycled—on 1³/₄ hours, off 1⁴/₄ hour) no other voltages applied. Tubes are evaluated, following 500 and 1000 hours of life test, for shorted or open elements, heater current, tube voltage drop, heater-cathode leakage, interelectrode leakage resistance, and emission.

Heater-Cycling Life Test


Statistical sample operated for 2000 cycles minimum to evaluate and control heater-cathode defects. Conditions of test include Ef = 7.0 volts cycled for one minute on and one minute off, Eb = 0 volts, and Ehk = 70 volts with heater positive with respect to cathode. Following this test, tubes are evaluated for open heaters, heater-cathode shorts, and heater-cathode leakage current.

Note: The conditions for some of the indicated tests have deliberately been selected to aggravate tube failures for test and evaluation purposes. In no sense should these conditions be interpreted as suitable operating conditions.

OUTLINE

7266 Page 4 10-62

RECEIVING TUBE DEPARTMENT

Owensboro, Kentucky

Volts

7289 Page 1 3-63

Cathode-Coated Unipotential

Plate to Cathode:

Heater Characteristics and Ratings

Direct Interelectrode Capacitances‡

ABSOLUTE-MAXIMUM VALUES

Heater Voltage, AC or DC

PLANAR TRIODE

-DESCRIPTION AND RATING

FOR GROUNDED-GRID OSCILLATOR, AMPLIFIER, AND FREQUENCY MULTIPLIER SERVICE

Metal and Ceramic High Transconductance Pulse Rated Shock Resistant

100 Watts Plate Dissipation

The 7289 is a metal-and-ceramic, high-mu triode designed for use as a grounded-grid CW oscillator, amplifier, or frequency multiplier at frequencies as high as 2500 megacycles. In addition, it may be used as a plate-pulsed oscillator or amplifier at frequencies as high as 3000 megacycles.

Features of the 7289 include planar electrode construction, high plate dissipation capability, excellent electrode isolation, low radio-frequency losses, high transconductance, and low interelectrode capacitances.

GENERAL

MECHANICAL

Mounting Position—Any—Only Plate Flange to be Used as a Socket Stop and Clamp Net Weight, approximate......2.5 Ounces Cooling Plate and Plate Seal—Conduction and Forced Air Grid and Cathode Seals—Conduction and Forced Air Recommended Air Flow Cowling—157-JAN Recommended Air Flow on Plate Radiator at Sea Level Incoming Air Temperature 25C, Plate Dissipation 100 Watts........12.5 Cu.Ft.PerMin.

MAXIMUM RATINGS

RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY

ELECTRICAL

Heater Current at Ef = 6.0 volts 1.0⁺ Amperes

Grid to Plate: (g to p) 2.0 pf

(p to k), maximum.....0.035 pf

Frequency	Megacycles
DC Plate Voltage	Volts
Negative DC Grid Voltage	Volts
Peak Positive RF Grid Voltage	Volts

RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR-CLASS C TELEPHONY

Carrier Conditions Per Tube For Use With a Maximum Modulation Factor of 1.0

Heater Voltage*4.5 to 5.7	Volts
Frequency	Megacycles
DC Plate Voltage¶600	Volts
Negative DC Grid Voltage	Volts
Peak Positive RF Grid Voltage	Volts

PLATE-PULSED OSCILLATOR OR AMPLIFIER

Heater Voltage*	Volts
Frequency	
Peak Positive-Pulse Plate Supply	0.0
Voltage	Volts
Duty Factor of Plate Pulse # △0.0025	
Pulse Duration	Microseconds
Plate Current	
Average During Plate Pulse △**	Amperes

Peak Negative RF Grid Voltage400	Volts
DC Grid Current	
DC Cathode Current	
Plate Dissipation	
Grid Dissipation	
Envelope Temperature at Hottest Point. 300	С

A GP ALS A A A A A A A A A A A A A A A A A A		
Peak Negative RF Grid Voltage	Volts	
DC Grid Current	Milliamperes	
DC Cathode Current	Milliamperes	
Plate Dissipation70		
Grid Dissipation	Watts	
Envelope Temperature at Hottest Point 300	C	

Negative Grid Voltage	** 1.
Average During Plate Pulse ^{††} 150 Grid Current	Volts
Average During Plate Pulse	Amperes
Plate Dissipation (Watts
Grid Dissipation (2.0	Watts
Envelope Temperature at Hottest Point. 300	С

Supersedes pages 1 and 2 of D & R sheet for 7289 dated 12-61

7289

Courtesy of http://BlackRadios.terryo.org

DC Plate Voltage

Page 2 ⊕ 3-63

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Heater Voltage	Volts
Plate Voltage	Volts
Grid Voltage§§	Volts
Amplification Factor	
Transconductance	Micromhos
Plate Current	Milliamperes

RADIO-FREQUENCY POWER AMPLIFIER

Frequency	Megacycles
DC Plate Voltage	Volts
DC Grid Voltage	Volts
DC Plate Current	Milliamperes
DC Grid Current, approximate	Milliamperes
Driving Power, approximate	
Useful Power Output	

RADIO-FREQUENCY OSCILLATOR

Frequency		Megacycles
-----------	--	------------

- * The equipment designer should design the equipment so that heater voltage is centered at some value within the range of 4.5 to 5.7 volts for CW operation, or 5.7 to 6.0 volts for pulse operation. Heater voltage variations about the center value should be kept as small as practical and should not, in any case, exceed $\pm 5\%$. The optimum center value of heater voltage depends on the cathode current and on other parameters of circuit design and operation. For specific recommendations, contact your General Electric tube sales representative.
- † Heater current of a bogey tube at Ef = 6.0 volts.
- ‡ Measured in a special shielded socket.
- § Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions.

DC Flate Voltage	V OILS
DC Grid Voltage, approximate22	Volts
DC Plate Current	Milliamperes
DC Grid Current	Milliamperes
Useful Power Output	Watts
PLATE-PULSED OSCILLATOR	
Frequency	Megacycles
Heater Voltage	Volts
Duty Factor	
Pulse Duration	Microseconds
Peak Positive-Pulse Plate-Supply	
Voltage	Volts
Plate Current	
Average During Plate Pulse 3.0	Amperes
Grid Current	
Average During Plate Pulse	Amperes
Useful Power Output	
Average During Plate Pulse	Kilowatts

1000 Volts

- I For modulation factors less than 1.0, a higher d-c plate voltage may be used if the sum of the peak positive audio voltage and the d-c plate voltage does not exceed 1200 volts.
- *Applications with a duty factor greater than 0.0025 should be referred to your General Electric tube sales representative for recommendations.
- ∧In any 5000-microsecond interval.
- **The regulation and/or series plate-supply impedance must be such as to limit the peak current, with the tube considered a short circuit, to a maximum of 30 amperes.
- ††The maximum instantaneous value should be within the range of +250 to -750 volts.
- $\delta \delta Adjusted$ for Ib = 70 milliamperes.

applicable to any electron tight to any electron applicable to any electron tight to any

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under potent claims covering combinations of tubes with other devices or

elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

7289 ET-F22 Page 3 12-61

INITIAL CHARACTERISTICS LIMITS

Heater Current	Min.	Max.	
Ef = 6.0 volts	0.90	1.05	Amperes
Grid Voltage			
Ef = 6.0 volts, Eb = 1000 volts, Ib = 100 ma	-2.0	-7.0	Volts
Grid Voltage			
Ef = 6.0 volts, Eb = 1000 volts, Ib = 1.0 ma		-25	Volts
Negative Grid Current			
Ef = 6.0 volts, Eb = 1000 volts, Ec adjusted for Ib = 100 ma		8.0	Microamperes
Interelectrode Leakage Resistance			
Ef = 6.0 volts, Polarity of applied d-c interelectrode voltage is such that no cathode emission results			
Grid to Cathode at 500 volts d-c	50		Megohms
Interelectrode Capacitances			
Grid to Plate: (g to p)	1.95	2.15	Picofarads
Grid to Cathode: (g to k). Plate to Cathode: (p to k).	5.6	7.0	Picofarads
	5995	0.035	Picofarads

SPECIAL PERFORMANCE TESTS

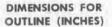
64.0

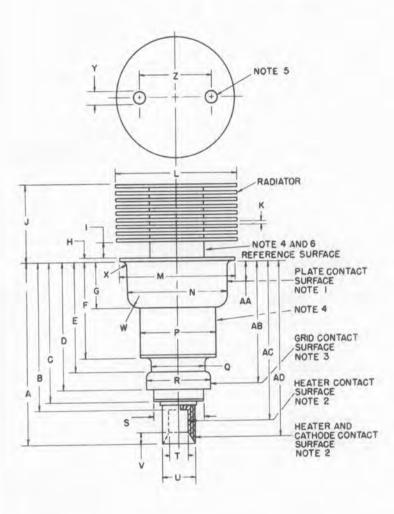
Oscillator Power Output Tubes are tested for power output as an oscillator under the fol- lowing conditions: $Ef = 5.0$ volts; $F = 2500$ MC, min.; $Eb = 1000$	Min.	Max.	
volts; Ib = 90 ma	15		Watts
Pulsed-Oscillator Power Output			
Tubes are tested for power output as an oscillator under the fol- lowing conditions: $Ef = 5.8$ volts; $F = 3000$ MC, min.; epy = 3500 volts; tp = 3.0 μ sec. $\pm 10\%$; Du = 0.0025 $\pm 5\%$; Rg adjusted for Ib = 7.5 ma; Ec = -1.5 volts, max.; Ic = 4.5 ma, max.	4.0		Watts
Low Pressure Voltage Breakdown Test Statistical sample tested for voltage breakdown at a pressure of 54 mm Hg. Tubes shall not give visual evidence of flashover when			

mm Hg. Tubes shall not give visual evidence of flashover when 1000 volts RMS, 60 cps, is applied between the plate and grid terminals.

DEGRADATION RATE TESTS

Shock

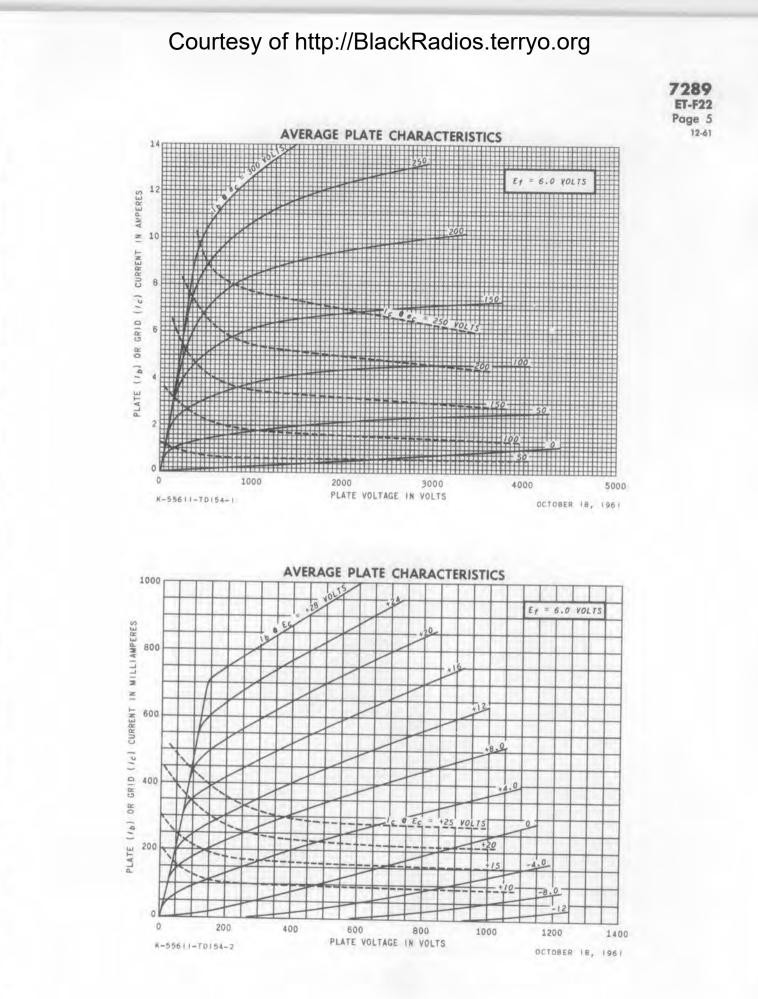

Statistical sample subjected to 5 impact accelerations of approximately 400 G and 0.5 milliseconds duration in each of three positions. The accelerating forces are applied by the Navy-type, High Impact (flyweight) Shock Machine.


500-Hour Life Test

Statistical sample operated for 500 hours as an oscillator to evaluate changes in power output with life.

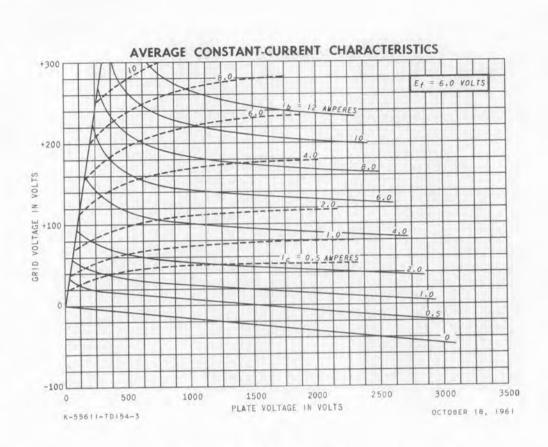
7289 ET-F22 Page 4 12-61

PHYSICAL DIMENSIONS

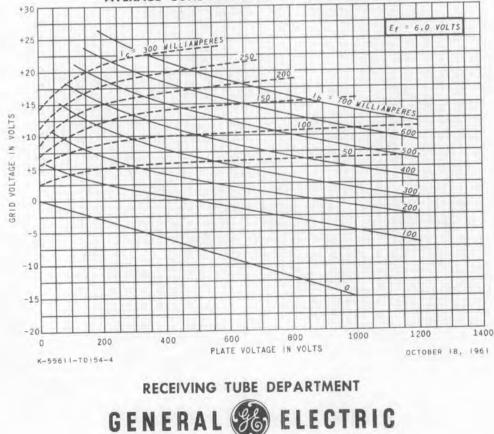

Ref.	Minimum	Maximum
A	1.815	1.875
В		1,534
Ċ		1.475
D	1.289	1.329
E	1.085	1.135
F	.880	.920
G	.462	.477
H		.040
I	.125	.185
J	.766	.826
K	.025	.046
L	1.234	1.264
M	1.180	1.195
N	1.025	1.035
P	.772	.792
Q	.541	.561
R	.655	.665
S		.545
Т	.213	.223
U	.315	.325
v		.086
W		.100
X		.035
Y	.105	.145
Z	.650	.850

DIMENSIONS FOR ELECTRODE CONTACT AREA (INCHES)

Ref.	Dimension	Contact
AA	.198 ± .163	Plate
AB	$1.225 \pm .040$	Grid
AC	$1.631 \pm .097$	Heater
AD	$1.645 \pm .170$	Cathode


NOTES

- The total indicated runout of the plate contact surface with respect to the cathode contact surfaces will not exceed .020 inch.
- The total indicated runout of the cathode contact surface with respect to the heater contact surfaces will not exceed .012 inch.
- 3. The total indicated runout of the grid contact surface with respect to the cathode contact surface will not exceed .020 inch.
- 4. Do not clamp or locate on this surface.
- 5. Hole provided for tube extractor through the top fin only.
- 6. Measure plate shank temperature on this surface.



12-61

AVERAGE CONSTANT-CURRENT CHARACTERISTICS

Owensboro, Kentucky

7296 METAL-CERAMIC TRIODE

7296 ET-T1538B Page 1 12-61

FOR VHF OSCILLATOR AND AMPLIFIER APPLICATIONS

The 7296 is a high-mu triode of ceramic-and-metal planar construction primarily intended for use as an oscillator, broadband radio-frequency amplifier, or VHF power amplifier. The 7296 is especially suited for use where unfavorable conditions of mechanical shock, mechanical vibration, and nuclear radiation are encountered.

GENERAL

ELECTRICAL

Cathode-Coated Unipotential	
Heater Voltage, AC or DC * $\dots 6.3 \pm 0.3$	Volts
Heater Current +	
Direct Interelectrode Capacitances 1	
Grid to Plate: (g to p) 2.2	pf
Input: g to $(h + k)$	pf
Output: p to $(h + k)$ 0.075	pf
Heater to Cathode: (h to k)2.8	pf

MECHANICAL

Mounting Position-Any §

MAXIMUM RATINGS

ABSOLUTE-MAXIMUM VALUES

Plate Voltage	Volts
Positive DC Grid Voltage0	
Negative DC Grid Voltage	
Plate Dissipation	
DC Grid Current	
DC Cathode Current	
Peak Cathode Current	Milliamperes

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or

Heater-Cathode Voltage	
Heater Positive with Respect to	
Cathode	Volts
Heater Negative with Respect to	
Cathode	Volts
Grid Circuit Resistance	
With Fixed Bias0.1	Megohms
With Cathode Bias	Megohms
Envelope Temperature at Hottest Point #	
Plate Dissipation not over 3.3 Watts 300	C
Plate Dissipation up to 5.5 Watts 250	C

all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

7296 ET-T1538B Page 2 12-61

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Plate Voltage	Volts
Cathode-Bias Resistor	
Amplification Factor	
Plate Resistance, approximate	Ohms

- * The equipment designer should design the equipment so that the heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- † Heater current of a bogey tube at Ef = 6.3 volts.

‡ Without external shield.

§ One method of mounting the 7296 is to use a stainless-steel "T" bolt (see drawing) to attach the mounting base of the tube to a chassis or circuit board. The "T" bolt should be inserted in the slot in the base of the tube, turned 90

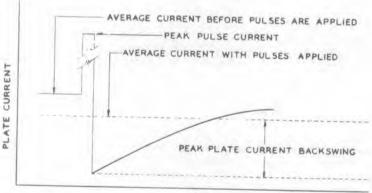
Transconductance	Micromhos
Plate Current	Milliamperes
Grid Voltage, approximate	
Ib = 10 Microamperes	Volts

degrees, and attached to the chassis or circuit board with a 4-40 nut and lock washer. Torque used to tighten the nut should not exceed 3 inch-pounds.

Ø Operation below the rated maximum envelope temperatures is recommended for applications requiring the longest possible tube life. The 7296 is also capable of operation at envelope temperatures much higher than the rated maximum values. For specific recommendations concerning higher temperature operation, contact your General Electric tube sales representative.

INITIAL CHARACTERISTICS LIMITS

Min.	Bogey	Max.	
Heater Current Ef=6.3 volts	400	430	Milliamperes
Plate Current $Ef = 6.3$ volts, $Eb = 200$ volts, $Rk = 68$ ohms (bypassed)	17	24	Milliamperes
$\label{eq:constraint} \begin{array}{l} Transconductance \\ Ef = 6.3 \mbox{ volts, } Eb = 200 \mbox{ volts, } Rk = 68 \mbox{ ohms (bypassed)} & \qquad 13000 \end{array}$	16500	20000	Micromhos
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	90	115	
Zero-Bias Transconductance Ef = 6.3 volts, $Eb = 100$ volts, $Ec = 0$ volts. 13000	20000		Micromhos
Grid Voltage Cutoff Ef = 6.3 volts, Eb = 200 volts, Ib = 10 μ a.	-5.5	-9.5	Volts
Interelectrode Capacitances Grid to Plate (g to p)	2,2	2.5	pf
Input: g to $(h + k)$	5.0 0.075 2.8	6.3 0.1 3.5	pf pf pf
Heater to Cathode: (h to k)	2.8	5.5	pi
Ef = 6.3 volts, $Eb = 200$ volts, $Ecc = -1.0$ volts, $Rk = 68$ ohms (bypassed), $Rg = 0.18$ meg.		0.5	Microamperes
Heater-Cathode Leakage Current Ef = 6.3 volts, Ehk = 100 volts			
Heater Positive with Respect to Cathode Heater Negative with Respect to Cathode		20 20	Microamperes Microamperes
Interelectrode Leakage Resistance Ef = 6.3 volts. Polarity of applied d-c interelectrode voltage is such that no cathode emission results.			
Grid to All at 100 volts d-c			Megohms Megohms
Grid Emission Current Ef = 7.0 volts, Eb = 200 volts, Ecc = -15 volts, Rg = 0.18 meg	- 11	2.0	Microamperes


SPECIAL PERFORMANCE TESTS

7296 ET-T1538B Page 3 12-61

400 Megacycle Oscillator Power Output Min. Tubes are tested for power output as an oscillator under the following conditions: $F = 400$ mc, $Ef = 6.3$ volts, $Eb = 300$ volts, $Rg = 1400$ ohms, $Ib = 20$ ma maximum, $Ic = 6.0-9.0$ ma.	. Bogey 6 2.0	Max.	Watts
Pulse Emission	0		Milliamperes
Grid Recovery. Change in Average Plate Current Peak Plate Current Backswing. Tubes with poor grid recovery affect circuit operation, when			Milliamperes Milliamperes

T the grid is driven positive by a pulse of signal or noise, somewhat as if a parallel RC circuit were in series with the grid. This effect may occur in tubes of any type, but is unimportant in many applications. In the majority of 7296 tubes the effect is negligible, but to eliminate the few in which it may be excessive, tubes are tested under the following conditions: Ef = 6.3 volts, Ebb = 250 volts, $R_L = 0.01$ meg. Ec is adjusted for Ib = 10 ma.

Upon application to the grid of a pulse driving it 3 volts positive with respect to cathode (prr = 60 pps, duty cycle = 0.12%) the change in average plate current is noted, and the peak plate current backswing is measured. The following diagram shows qualitatively the plate current-time relationship for a tube (with poor grid recovery) subjected to this test:

TIME

Low Frequency Vibrational Output

Statistical sample is subjected to vibration in each of two planes at 40 cps, with peak acceleration 15 G. Tube is operated with Ef = 6.3 volts, Ebb = 200 volts, Rk = 68 ohms (bypassed), $R_L = 2000$ ohms.

Variable Frequency Vibrational Output

The tube is designed to be free of vibrational outputs in excess of 100 mv RMS at any frequency within the range 100-2000 cps, when vibrated in either of two planes at 10 G peak acceleration. Electrical conditions for this test are the same as for Low Frequency Vibrational Output.

Low Pressure Voltage Breakdown Test

Statistical sample tested for voltage breakdown at a pressure of 8 mm Hg, to simulate an altitude of 100,000 feet. Tubes shall not give visual evidence of flashover or corona when 300 volts RMS, 60 cps, is applied between the plate and grid terminals.

15 Millivolts RMS

DEGRADATION RATE TESTS

Fatigue

Statistical sample vibrated for a total of six hours, three hours in each of two planes, at a peak acceleration of 10 G. Frequency is continuously varied from 30 cps to 2000 cps and back to 30 cps, with a period of ten minutes. Tubes are operated during the test with Ef = 6.3 volts, Eb = 200 volts, and Rk = 68 ohms. Following the test, tubes are evaluated for low frequency vibrational output, heater-cathode leakage, heater current, and transconductance.

Shock

Statistical sample subjected to 5 impact accelerations of approximately 600 G in each of four positions. The accelerating forces are applied by the Navy-type, High Impact (flyweight) Shock Machine using a 42° hammer angle. Tubes are mounted by T-bolt with 3 inch-pounds torque, and operated during the test with Ef = 6.3 volts, Eb = 200 volts, Ehk = +100 volts, Rg = 0.1 Meg, and Rk = 68 ohms. Following the test, tubes are evaluated for low frequency vibrational output, heater-cathode leakage, heater current, and transconductance.

Stability Life Test

The statistical sample subjected to the Dynamic Life Test is evaluated for percent change in zero-bias transconductance of individual tubes, from the initial reading to readings following 2 hours and 20 hours of the life test.

Survival Rate Life Test

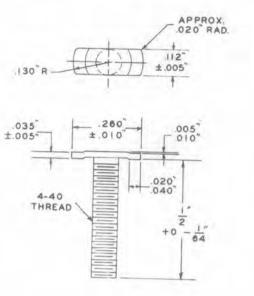
The combined statistical samples subjected to the Dynamic and Pulse Life Tests are evaluated for shorted and open elements following approximately 100 hours of life test.

Dynamic Life Test

Statistical sample operated, with a 60 cps grid signal, at maximum rated DC grid current and cathode current for a period of 1000 hours. Heater voltage is cycled (on 13/4 hours, off 1/4 hour). Tubes are evaluated, following 500 and 1000 hours of life test, for shorted or open elements, heater current, zero-bias transconductance, oscillator power output, and heater-cathode leakage.

Pulse Life Test

Statistical sample operated with 400 ma peak cathode current, 1% duty cycle, for 1000 hours. Heater voltage is cycled (on 13/4 hours, off 1/4 hour). Tubes are evaluated, following 500 and 1000 hours of life test, for shorted or open elements, heater current, pulse emission, and heater-cathode leakage.


Interface Life Test

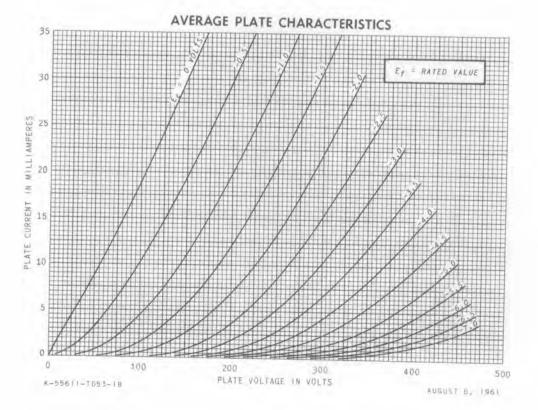
Statistical sample operated for 1000 hours with Ef = 6.6 volts, no other voltages applied, and evaluated for cathode interface resistance following the life test.

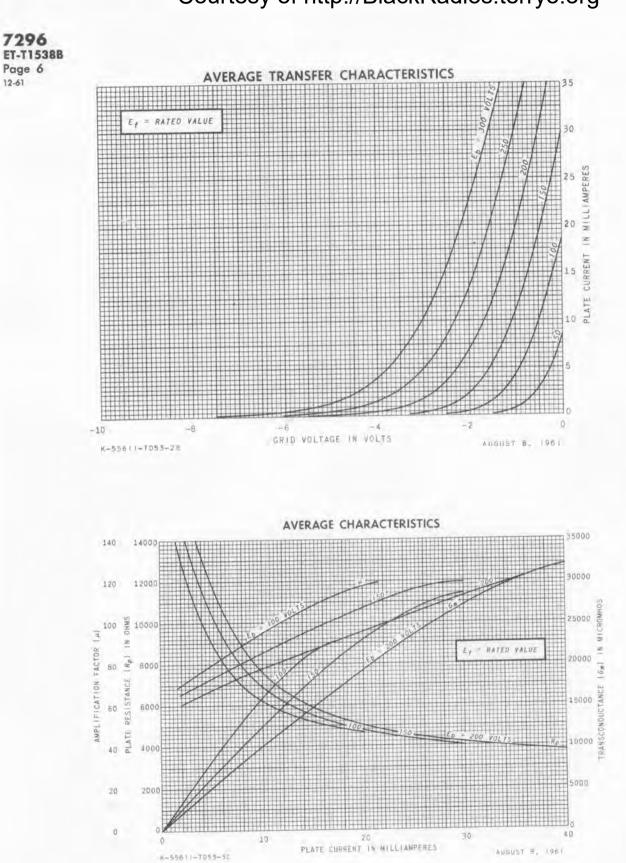
Heater-Cycling Life Test

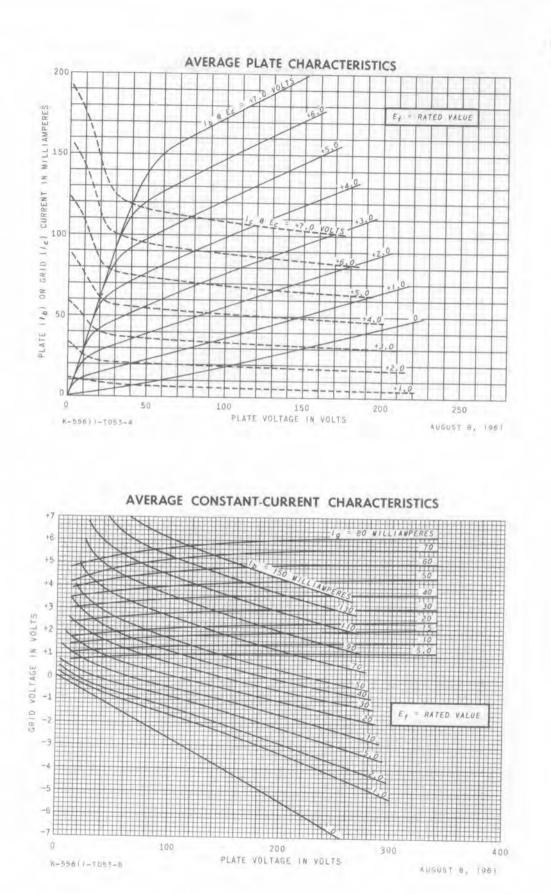
Statistical sample operated for 2000 cycles minimum to evaluate and control heater-cathode defects. Conditions of test include Ef = 7.5 volts cycled for one minute on and one minute off, Eb = Ec = 0 volts, and Ehk = 10070 volts with heater positive with respect to cathode. Following this test tubes are evaluated for open heaters, heater-cathode shorts, and heater-cathode leakage current.

MOUNTING BOLT

.130" ±,015 150"R ±.010" .025" 1.010" .006" .083 1.010 1.010 : 010 .065" 150 HEATERS 1.003" MOUNTING .187 111 -200 CATHODE .875" ±.015 .200 GRID wis. 1005 PLATE .028" 1.003" .550"±.015' DIA. .765" .087" ±.005*


PHYSICAL DIMENSIONS


7296 ET-T1538B


Page 5

12-61

Maximum eccentricity of insulators 0.015 in. from center line,

7296 ET-T1538B Page 7 12-61

Courtesy of http://BlackRadios.terryo.org ELECTRONIC

Planar Triode

Page 1 10-66

7391

FOR GROUNDED-GRID CLASS C OSCILLATOR APPLICATIONS

The 7391 is a high-mu, metal-and-ceramic triode intended for operation as a groundedgrid, Class C oscillator at frequencies as high as 6000 megacycles.

Features of the tube include small size, planar electrode construction with close spacing, inherent rigidity, and an envelope structure convenient for coaxial circuit applications.

The physical appearance and dimensions of the 7391 are identical to those of the 6299.

GENERAL

ELECTRICAL

Cathode - Coated Unipotential

NNOVATIONS

TUBES

IN ACTION

Heater Characteris	tics	and 1	Rati	Ings	ž		
Heater Voltage, AC	or	DC*,				6.3±0.3	Volts
Heater Current‡ .						. 0.38	Amperes
Cathode Heating Tin	ne,	minim	um			. 60	Seconds
Direct Interelectro	de	Capac:	itar	ices	3:		
Grid to Plate:	(g	to p)				. 1.58	pf
Grid to Cathode	and	Heate	er:				
g to $(h + k)$. 3.25	pf
Plate to Cathode	an	d Heat	ter:				
p to $(h + k)$						0.0158	pf

MECHANICAL

Operating Position - Any Net Weight, approximate . 1/6 Ounce Cooling - Conduction

MAXIMUM RATINGS

ABSOLUTE-MAXIMUM VALUES

Plate Voltage.								,								1	2	. 200	Volts
																			Volts
																			Watts
DC Plate Current DC Grid Current DC Cathode Current	1		÷.,		•	1	•		•	•	1			÷	•	•		. 15	Milliamperes
State State in a																		The second	Milliamperes
Envelope Temperature at 1	Hott	est	P	oint.		-		2		:	1	2	1	1	1	1	1	. 15	Milliamperes

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an

express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Plate Voltage																. 175	Volts
Crid Voltage		1.00	 	1.0						 100							Volts
A 11 Finstion Fostor				1.1	 		 						1.81	1.8			
Transconductance		 	 1.1		 	1.4			1.0			 				TTOOR	Micromhos
Plate Current	+						1.0	÷			*		•		••	. 10	Milliamperes

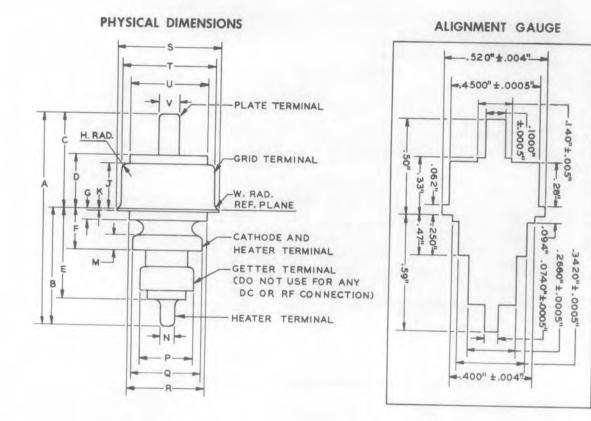
CLASS C CW OSCILLATOR-GROUNDED-GRID COAXIAL-TYPE CIRCUIT

CLASS C CT						22.2							1.	500	1000	5400	Megacycles
Frequency	•	•		 •					1		1	1.1		150	150	150	Volts
Plate Voltage.					+							1			12	12	Milliamperes
Plate Current.						+								12		2.0	Milliamperes
Grid Current .	1		1.		1.			14		+				3.0	3.0	3.0	
		1.0							1.0		1.1			500	250	65	Milliwatts
Power Output .										- C.J							

NOTES

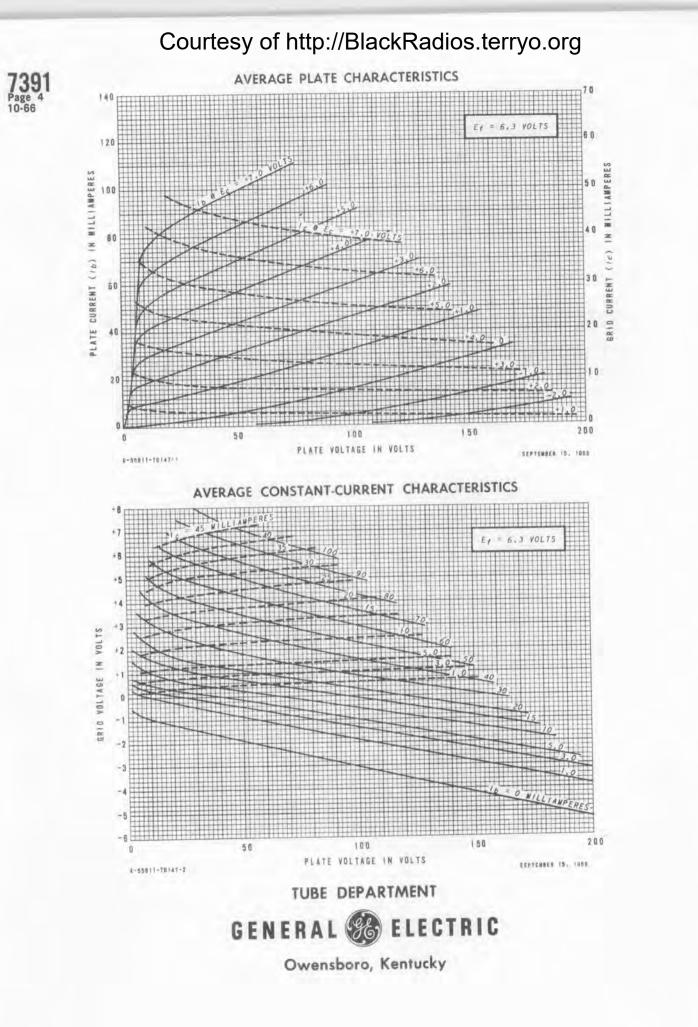
- * The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- # Heater current of a bogey tube at Ef = 6.3 volts.
- § Without external shield.
- The electrical connections to the plate and cathode must provide good thermal conductivity from these electrodes. The plate contact must be sufficiently flexible to keep the lateral force on the plate terminal at a minimum.

INITIAL CHARACTERISTICS LIMITS


Heater Current Ef = 6.3 volts	Minimum . 360	Bogey 380	Maximum 400	Milliamperes
Grid Voltage Ef = 6.3 volts, Eb = 175 volts, Ib = 10 ma	0.7	-1.5	-2,55	Volts
Transconductance Ef = 6.3 volts, Eb = 175 volts, Ec adjusted for $Ib = 10$ ma.	. 8000	11000	13500	Micromhos
Amplification Factor Ef = 6.3 volts, Eb = 175 volts, Ec adjusted for $Ib = 10$ ma.	. 46	62	80	
Grid Voltage Cutoff Ef = 6.3 volts, Eb = 175 volts, Ib = 100 µa	2.4	-4.2	-7.0	Volts
Interelectrode Leakage Resistance Ef = 6.3 volts, Polarity of applied d-c interelectrode volt is such that no cathode emission results.	age			
Grid to Cathode and Heater at 45 volts d-c	. 0.25			Megohms Megohms
Interelectrode Capacitances Grid to Plate: (g to p)	. 2.00	1.58 3.25 0.0158	1.80 3.95 0.023	pf pf pf

SPECIAL PERFORMANCE TESTS

5400 Megacycle Oscillator Power Output Ef = 6.3 volts, Eb = 150 volts, Rg = 2000 ohms, Ib = 15±0.5 ma,			Milliwatts
F = 5400 MC, min.	30	65	 MILLIWALLS


DEGRADATION RATE TESTS

500-Hour Life Statistical sample operated for 500 hours to evaluate changes in power output and transconductance with life.

Ref.	INCHES		MILLIMETERS	
MCI.	Minimum	Maximum	Minimum	Maximum
A	0.960	1.040	24.38	26.42
В	0.530	0.590	13.46	14.99
С	0.410	0.470	10.41	11.94
D		0.272		6.91
E		0.475		12.07
F	0.163	0.193	4.14	4.90
G		0.060		1.52
H		0.030		0.76
J	0.190	0.210	4.83	5.33
K	0.009	0.015	0.23	0.38
М	0.040	0.070	1.02	1.78
N	0.059	0.065	1.50	1.65
P		0.257		6.53
Q	0.326	0.334	8.28	8.48
R		0.385		9.78
S	0.483	0.497	12.27	12.62
Т	0.435	0.445	11.05	11.30
U		0.385		9.78
V	0.088	0.094	2.24	2.39
W		0.008		0.20

7391 Page 3 10-66

ELECTRON Courtesy of http://BlackRadios.terryo.org INVINION VIA TITIOIN

Tetrode

ET-T1598D Page 1 9-67

IN ACTION

PULSED SERVICE GROUNDED-GRID OPERATION

FORCED-AIR COOLED METAL AND CERAMIC

INTEGRAL RADIATOR

The GL-7399 is a small-size, fourelectrode transmitting tube especially designed for pulsed-amplifier or -oscillator service at L-band frequencies. This tetrode is particularly well suited for use in airborne or ground-based radar equipment.

The tube is capable of providing useful output at frequencies up to approximately 1500 megacycles.

Features of the GL-7399 include long

life and reliability, long pulse width, high peak power and high gain, broad-banding capability, and resistance to shock and vibration.

These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where performance and reliability are important.

Electrical		Thermal	
Mini- Maxi- mum Bogey mum Heater Voltage (See Note 1)	Volts	Cooling—Forced Air‡ Radiator§ Plate Dissipation 500 400 300	187-11-
Heater Current. 5.6 Amplification 5.6 Factor, G_2 to G_1 . 10.5 E_{g2} = 275 Volts DC, E_b =1000 Volts DC,	Amperes	Air Flow, 45 C incoming air temperature	Watts Min Cubic Feet per Minute
$I_b = 200$ Milliamperes DC Cathode Heating Time	Minute	anode at room tempera- ture 0.9 0.5 0.2 Anode Hub Temperature 250 Seals	Inches-Water Max C
Cathode to Plate†	μμf μμf μμf	Screen and Control Grid, approximate1 Heater and Cathode, ap-	per Minute
Mechanical Mounting Position—Any		proximate1 Ceramic Temperature at any	Cubic Foot per Minute
Net Weight1.0	Pounds	Point	Max C

RADIO-FREQUENCY POWER AMPLIFIER-CLASS B

Maximum Ratings

Typic	I One	ration	

Plate- and Screen-Grid Pulsed, 500 Megacycles DC Plate Voltage, during pulse. 10 DC Plate Current, during pulse 10 DC Grid-No. 2 Voltage, during pulse. 2000 DC Grid-No. 2 Input 55 Plate Dissipation 500 DC Grid-No. 1 Voltage, not pulsed -175 DC Grid-No. 1 Current, during pulse 2.5 Pulse Width 66. 15 Duty Factor $\phi\phi$. 0.0012	Kilovolts Amperes Volts Watts Watts Volts Amperes Microscoppede	Grounded-grid Circuit, 500 Megacycles DC Plate Voltage, during pulse. 9 DC Grid-No. 2 Voltage, during pulse 1400 DC Grid-No. 1 Voltage, not pulsed -125 Peak RF Plate Voltage 7000 Peak RF Grid Voltage 300 DC Plate Current, during pulse 9.2 DC Grid-No. 1 Current, during pulse 1.1 DC Grid-No. 2 Current, during pulse .0.47 Driving Power at Tube, during pulse 2.6 Power Output, during pulse (useful) 52 Pulse Width 15 Duty Factor 0.001	Kilovolts Volts Volts Volts Amperes Amperes Amperes Kilowatts
--	--	--	--

Note 1: Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater-voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.

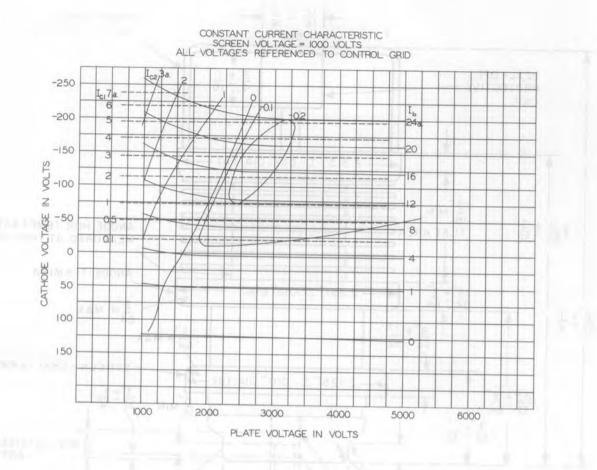
dae ET T15000 Jula 1 1 1

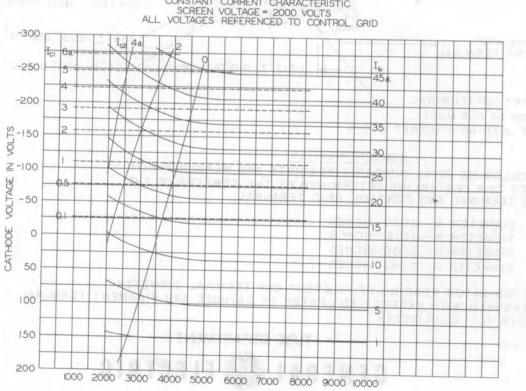
RADIO-FREQUENCY POWER AMPLIFIER-CLASS C

Maximum Ratings		Typical Operation	Output Circuit
Pulsed Drive, 1250 MegacyclesDC Plate Voltage5DC Plate Current, during pulse6DC Grid-No. 2 Voltage1.1DC Grid-No. 2 Input5DC Grid-No. 1 Voltage-225DC Grid-No. 1 Voltage-225Plate Dissipation500Pulse Width < 15	Amperes Kilovolts Watts Volts Amperes Watts Microseconds	D. Crfid-INO. I VOILage	Amperes Kilovolt Milliamperes Volts Milliamperes Kilowatts Kilowatts

Control grid connected directly to screen grid.

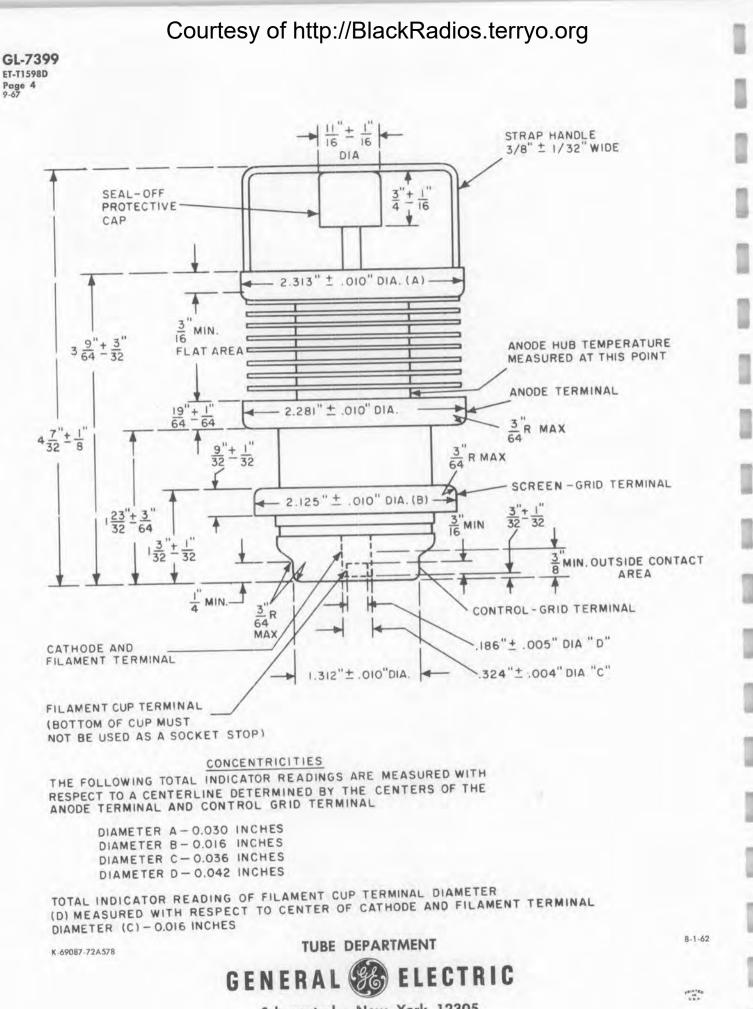
Complete external shielding between cathode and plate.


Forced air cooling should be applied during the application of any voltages. Provision must be made for unobstructed passage of cooling air between radiator fins, and between the anode terminal and adjacent


fins.
Measured at the base of the fin adjacent to the plate terminal. See outline drawing on page 4.
Maximum average value.
For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.
Pulse duration measured between points at 70 percent of peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
Measured time does do the fluctuations over the top portion of the pulse.

φ Maximum ratio of on-time to elapsed time during any 12.5-millisecond period.

 $\phi\phi$ Maximum ratio of on-time to elapsed time during any 1.5-millisecond period. *A minimum surge-limiting resistance of 50 ohms must be placed between the plate of the tube and the B+ power supply at steadystate voltages greater than 3.5 kilovolts.


GL-7399 ET-T1598D Page 3 9-67

CONSTANT CURRENT CHARACTERISTIC SCREEN VOLTAGE = 2000 VOLTS ALL VOLTAGES REFERENCED TO CONTROL GRID

PLATE VOLTAGE IN VOLTS

Schenectady, New York 12305

7462 Page 1

METAL-CERAMIC TRIODE

—DESCRIPTION AND RATING

The 7462 is a high-mu triode of ceramic-and-metal planar construction primarily intended for radio-frequency amplifier service from low frequencies into the ultra-high-frequency range. It is similar to the 7077 in characteristics but differs in having terminal lugs for use in print-board circuits.

GENERAL

ELECTRICAL

Cathode-Coated Unipotential	
Heater Characteristics and Ratings	
Heater Voltage, AC or DC [*]	Volts
Heater Current [†] 0.24	Amperes
Direct Interelectrode Capacitances [†]	
Grid to Plate: (g to p)	pf
Input: g to $(h+k)$	pf
Output: p to $(h+k)$	pf
Heater to Cathode (h to k)	pf

MECHANICAL

Mounting Position—Any See Outline Drawing on page 2 for dimensions and electrical connections.

MAXIMUM RATINGS

ABSOLUTE-MAXIMUM VALUES

Plate Voltage	Volts
Positive Peak and DC Grid Voltage0	Volts
Negative Peak and DC Grid Voltage 50	Volts
Plate Dissipation1.1	Watts
DC Cathode Current	Milliamperes

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of

Heater-Cathode Voltage Heater Positive with Respect to	
Cathode	Volts
Heater Negative with Respect to	
Cathode	Volts
Grid-Circuit Resistance, with Fixed	
Bias§0.01	Megohms
Bulb Temperature at Hottest Point¶ 250	C

all other electron devices in the equipment.

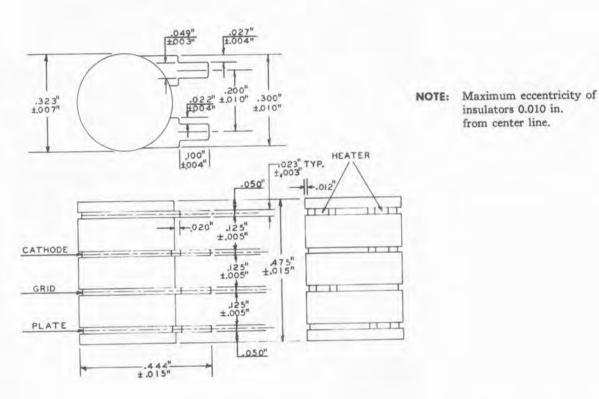
The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Plate Voltage	Volts
Grid Voltage+6.0	Volts
Cathode-Bias Resistor	Ohms
Amplification Factor	

Plate Resistance, approximate	Ohms
Transconductance	Micromhos
Plate Current	Milliamperes
Grid Voltage, approximate	
Ib = 100 Microamperes2.4	Volts



Supersedes 7462 D & R sheet ET-T1540A, dated 2-60

7462 Page 2 3-63

FOOTNOTES

- * The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance. † Heater current of a bogey tube at Ef = 6.3 volts.
- ‡ Without external shield.
- § If a cathode bias resistor is used, the grid-circuit resistance may be as high as (10,000+100 Rk+RL) ohms, where Rk is the value of the cathode-bias resistor in ohms and RL is the value of the plate-load resistor in ohms.
- ¶ For applications where long life is a primary consideration, it is recommended that the envelope temperature be maintained below 175 C.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or

elements. In the absence of an express written agreement to the contrary, General Electric Company assumes na liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

insulators 0.010 in. from center line.

INITIAL CHARACTERISTICS LIMITS

	Min.	Bogey	Max.	
Heater Current Ef = 6.3 volts	222	240	258	Milliamperes
Plate Current Ef = 6.3 volts, Eb = 150 volts, Rk = 82 ohms (bypassed)	4.5	7.5	11	Milliamperes
Transconductance $Ef = 6.3$ volts, $Eb = 150$ volts, $Ec = +6$ volts, $Rk = 910$ ohms (bypassed).	8000	10500	13000	Micromhos
Amplification Factor Ef = 6.3 volts, Eb = 150 volts, Ec = $+6$ volts, Rk = 910 ohms (bypassed)	65	94	115	

7462 Page 3

INITIAL CHARACTERISTICS LIMITS (Continued)

Transconductance Change with Heater Voltage Difference between transconductance at $Ef = 6.3$ volts and trans- conductance at $Ef = 6.0$ volts (other conditions the same) ex- pressed as a percentage of transconductance at $Ef = 6.3$ volts.	Min.	Bogey	Max	Percent
Grid Voltage Cutoff Ef = 6.3 volts, Eb = 150 volts, Ib = 100 μa		-2.4		Volts
Interelectrode Capacitances Grid to Plate: (g to p) Input: g to $(h+k)$ Output: p to $(h+k)$. Heater to Cathode: (h to k).	1.05 1.25 0.013	-2.4 1.25 1.8 0.032 1.5	1.45 2.25 0.045	pf pf pf
Heater-Cathode Leakage Current Ef = 6.3 volts, Ehk = 100 volts Heater Positive with Respect to Cathode Heater Negative with Respect to Cathode.			1.9 20 20	pf Microamperes Microamperes
Interelectrode Leakage Resistance Ef = 6.3 volts. Polarity of applied d-c interelectrode voltage is such that no cathode emission results. Grid to All of 100 volts d-c. Plate to All at 300 volts d-c.	100 100	*****		Megohms Megohms
Grid Emission Current Ef = 7.0 volts, Eb = 100 volts, Ecc = -10 volts, Rg = 0.1 meg			2.0	Microamperes

SPECIAL PERFORMANCE TESTS

Statistical sample is subjected to vibration in each of two planes at 40 cps, with peak acceleration 15 G. Tube is operated with $Ef = 6.3$ volts, $Ebb = 150$ volts, $Rk = 82$ ohms (bypassed), $R_L =$ 10000 ohms			
	181.1	 10	Millivolts RMS
Variable Frequency Vibrational Output Statistical sample is subjected to vibration according to the pro- cedure given below. Tube is operated with $Ef = 6.3$ volts, $Ebb =$ 150 volts, $Rk = 82$ ohms (bypassed) $R_L = 10000$ ohms		 15	Millivolts RMS
The variable-frequency vibration test shall be performed as follows:		 10	ATTALLY OLGS TOTAD

 The frequency shall be increased from 100 to 2000 cps with approximately logarithmic progression in 3 ± 1 minutes. The return sweep (2000 to 100 cps) is not required.

2. The tube shall be vibrated with simple harmonic motion in each of two planes: first, parallel to the cylindrical axis; second, perpendicular to the cylindrical axis and parallel to a line through the major axis of a terminal lug. At all frequencies from 100 to 2000 cps, the total harmonic distortion of the acceleration waveform shall be less than 5%.

3. The peak acceleration shall be maintained at 10 ± 1.0 G throughout the test.

4. The value of the alternating voltage produced across the load resistor (R_L), as a result of the vibration, shall be measured with a suitable device having a response to the RMS value of the voltage to within ±0.5 db of the response at 400 cps for the frequency range of 100 to 3000 cps, and having a band-pass filter with an attenuation rate of 24 db per octave below the low frequency cutoff point of 50 cps and above the high frequency cutoff point of 50000 cps. The meter shall have a dynamic response characteristic equivalent to or faster than a VU meter (operated in accordance with ASA Standard No. C16.5-1954).

Low Pressure Voltage Breakdown Test

Statistical sample tested for voltage breakdown at a pressure of 8 mm Hg, to simulate an altitude of 100,000 feet. Tubes shall not give visual evidence of flashover or corona when 300 volts RMS, 60 cps, is applied between the plate and grid terminals.

7462 Page 4

3-63

DEGRADATION RATE TESTS

Fatigue

Statistical sample vibrated for a total of six hours, three hours in each of two planes, at a peak acceleration of 10 G. Frequency is continuously varied from 30 cps to 2000 cps and back to 30 cps, with a period of ten minutes. Tubes are operated during the test with Ef = 6.3 volts, Eb = 150 volts, and Rk = 82 ohms. Following the test, tubes are evaluated for low frequency vibrational output, heater-cathode leakage, heater current, and transconductance.

Shock

Statistical sample subjected to 5 impact accelerations of approximately 450 G in each of four positions. The accelerating forces are applied by the Navy-type, High Impact (flyweight) Shock Machine using a 30° hammer angle. Tubes are operated during the test with Ef = 6.3 volts, Eb = 150 volts, Ehk = +100 volts, Rg = 0.1 meg, and Rk = 82 ohms. Following the test, tubes are evaluated for low frequency vibrational output, heater-cathode leakage, heater current, and transconductance.

Stability Life Test

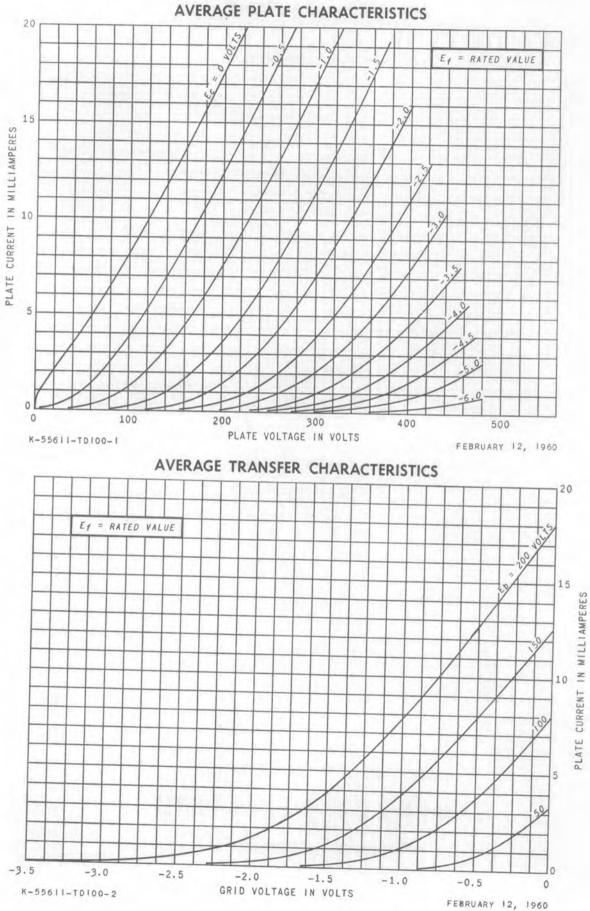
The statistical sample subjected to the Intermittent Life Test is evaluated for percent change in transconductance of individual tubes, from the initial reading to readings following 2 hours and 20 hours of the life test.

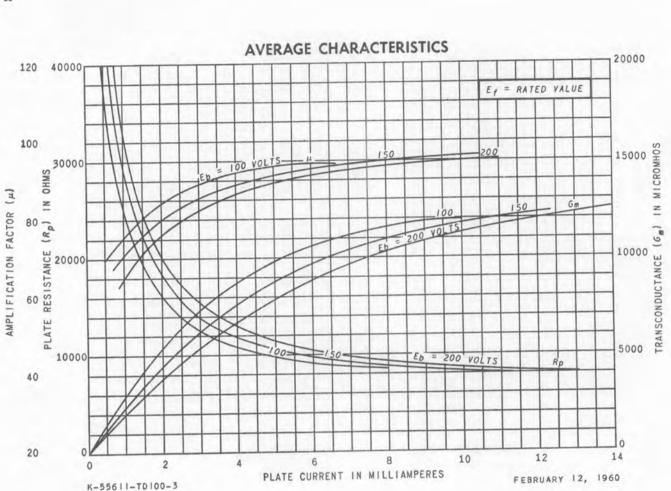
Survival Rate Life Test

The statistical sample subjected to the Intermittent Life Test is evaluated for shorted and open elements, and transconductance, following approximately 100 hours of life test.

Intermittent Life Test

Statistical sample operated 1000 hours under the following conditions: Ef = 6.3 volts, Eb = 150 volts, Ec = +6 volts, Ehk = -70 volts, Rk = 910 ohms, Rg = 0.1 meg. Heater voltage is cycled (on 134 hours, off 34 hour). Tubes are evaluated, following 500 and 1000 hours of life test, for shorted or open elements, heater current, transconductance, heater-cathode leakage, and interelectrode leakage resistance.


Interface Life Test


Statistical sample operated for 500 hours with Ef = 6.6 volts, no other voltages applied, and evaluated for cathode interface resistance following the life test.

Heater-Cycling Life Test

Statistical sample operated for 2000 cycles minimum to evaluate and control heater-cathode defects. Conditions of test include Ef = 7.0 volts cycled for one minute on and one minute off, Eb = Ec = 0 volts, and Ehk = 70 volts with heater positive with respect to cathode. Following the test, tubes are evaluated for open heaters, heater-cathode shorts, and heater-cathode leakage.

7462 Page 5 3-63

7462 Page 6 3-63

7486

7486 Page 1

METAL-CERAMIC TRIODE

FOR UHF OSCILLATOR AND POWER AMPLIFIER APPLICATIONS

-DESCRIPTION AND RATING=

The 7486 is a high-mu triode of ceramic-and-metal planar construction intended for use as an oscillator or radio-frequency power amplifier in the ultra-high-frequency range. The 7486 is especially suited for use where unfavorable conditions of mechanical shock, mechanical vibration, and nuclear radiation are encountered.

GENERAL

ELECTRICAL

Cathode-Coated Unipotential	
Heater Characteristics and Ratings	
Heater Voltage, AC or DC* 6.3 ± 0.3	Volts
Heater Current	Amperes
Direct Interelectrode Capacitances [‡]	
Grid to Plate: (g to p)1.0	pf
Input: g to (h+k)	pf
Output: p to (h+k) 0.01	pf
Heater to Cathode: (h to k)1.1	pf

MECHANICAL

Mounting Position-Any

See Outline Drawing on page 3 for dimensions and electrical connections

MAXIMUM RATINGS

ABSOLUTE-MAXIMUM VALUES

Plate Voltage	Volts
Positive DC Grid Voltage	Volts
Negative DC Grid Voltage	Volts
Plate Dissipation	Watts
DC Grid Current	Milliamperes
DC Cathode Current	Milliamperes
Peak Cathode Current	Milliamperes

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the obsence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

Supersedes ET-T1531 dated 6-59

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Plate Voltage	100	150	Volts
Grid Voltage	0	*****	Volts
Cathode-Bias Resistor		82	Ohms
Amplification Factor		90	
Transconductance	11500	10500	Micromhos
Plate Current	8.0	7.5	Milliamperes
UHF Oscillator Service			
Plate Voltage	150	150	Volts
Grid Resistor.	1000	1000	Ohms
Plate Current	8.0	8.0	Milliamperes
Grid Current	2.0	2.0	Milliamperes
Frequency	450	1200	Megacycles
Power Output, approximate	450	300	Milliwatts
Class C RF Amplifier			
Plate Voltage		150	Volts
Grid Resistor	*********	3000	Ohms
Plate Current		5.0	Milliamperes
Grid Current		1.0	Milliamperes
Frequency.		450	Megacycles
Power Output, approximate		300	Milliwatts

FOOTNOTES

* The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.

voltage within the specified tolerance.envelop† Heater current of a bogey tube at Ef = 6.3 volts.mum

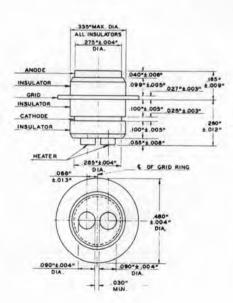
‡ Measured using a grounded adapter that provides shielding between external terminals of tube. § Operation below the rated maximum envelope temperature is recommended for applications requiring the longest possible tube life. The 7486 is also capable of operation at envelope temperatures much higher than the rated maximum values. For specific recommendations concerning higher temperature operation, contact your General Electric tube sales representative.

INITIAL CHARACTERISTICS LIMITS

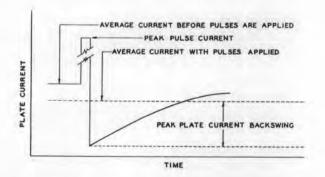
	Min.	Bogey	Max.	
Heater Current				
Ef = 6.3 volts	222	240	258	Milliamperes
Plate Current				
Ef = 6.3 volts, $Eb = 150$ volts, $Rk = 82$ ohms (bypassed)	4.5		11	Milliamperes
Zero-Bias Transconductance				
Ef = 6.3 volts, $Eb = 100$ volts, $Ec = 0$ volts	8000	11500	*****	Micromhos
Transconductance Change with Heater Voltage Difference between Zero-Bias Transconductance measured at Ef = 6.3 volts and $Ef = 6.0$ volts (other conditions the same)			20	Percent
expressed as a percentage			20	reicent
Amplification Factor				
Ef = 6.3 volts, $Eb = 150$ volts, $Rk = 82$ ohms (bypassed)	65	90	115	
Grid Voltage Cutoff				
$Ef = 6.3$ volts, $Eb = 150$ volts, $Ib = 100 \ \mu a$		-2.4	-4.5	Volts
Interelectrode Capacitances				
Grid to Plate: (g to p)	0.84	1.00	1.16	Picofarads
Input: g to (h+k)	1.25	1.70	2.15	Picofarads
Output: p to (h+k)	0.004	0.010	0.016	Picofarads
Heater to Cathode: (h to k)	0.80	1.10	1.40	Picofarads

INITIAL CHARACTERISTICS LIMITS (Continued)

Heater-Cathode Leakage Current	Min.	Bogey	Max.	
Ef = 6.3 volts, $Ehk = 100$ volts				
Heater Positive with Respect to Cathode			20	Microamperes
Heater Negative with Respect to Cathode			20	Microamperes
Interelectrode Leakage Resistance				
Ef = 6.3 volts. Polarity of applied d-c interelectrode voltage				
is such that no cathode emission results.				
Grid to All at 100 volts d-c	100			Megohms
Plate to All at 300 volts d-c	100			Megohms
Grid Emission Current				
Ef = 7.0 volts, $Eb = 150$ volts, $Ecc = -20$ volts, $Rg = 0.1$ meg			2.0	Microamperes


SPECIAL PERFORMANCE TESTS

	Min.	Bogey	Max.		
1200 Megacycle Oscillator Power Output	200			Milliwatts	
Tubes are tested for power output as an oscillator under the	Eb = 150 volts	Rg = 1000	ohms, Ib	=8.0 ma max	imum,
following conditions: $F = 1200 \text{ mc} \pm 50 \text{ mc}$, $Ef = 6.3 \text{ volts}$,	Ic = 1.6 - 2.0 m	a			
Pulse Emission	90			Milliamperes	
Tubes are tested for pulse emission under the following conditions: $Ef = 6.3$ volts, $Eb = 150$ volts, $Ec = -10$ volts,	egk = +7 V, the cathode current			factor = 0.01.	Pulse
Grid Recovery					
Change in Average Plate Current			0.6	Milliamperes	
Peak Plate Current Backswing			1.0	Milliamperes	
ubes with poor grid recovery affect circuit operation, ac	djusted for Ib =	3.0 ma.			


Tubes with poor grid recovery affect circuit operation, when the grid is driven positive by a pulse of signal or noise, somewhat as if a parallel RC circuit were in series with the grid. This effect may occur in tubes of any type, but is unimportant in many applications. In the majority of 7486 tubes the effect is negligible, but to eliminate the few in which it may be excessive, tubes are tested under the following conditions: Ef = 6.3 volts, Ebb = 250 volts, $R_L = 0.01$ meg. Ec is

Upon application to the grid of a 5-volt positive pulse (prr = 60 pps, duty factor = 0.0012) the change in average plate current is noted, and the peak plate current backswing is measured. The following diagram shows qualitatively the plate current-time relationship for a tube (with poor grid recovery) subjected to this test.

OUTLINE DRAWING

PLATE CURRENT VS TIME-GRID RECOVERY TEST

1—Maximum eccentricity of anode, grid, and cathode 0.005" from center line.

2—Maximum eccentricity of insulators 0.010" from center line.

- 3—Center line of grid ring used as reference line for horizontal tolerances.
- 4—Bottom surface of grid ring used as reference line for vertical tolerances.

7486 Page 4 10-62

SPECIAL PERFORMANCE TESTS (Continued)

Min.

and grid terminals.

Low Frequency Vibrational Output Statistical sample is subjected to vibration in each of two

Statistical sample is subjected to vibration in each of two planes at 40 cps, with peak acceleration 15G. Tube is

Variable Frequency Vibrational Output

The tube is designed to be free of vibrational outputs in excess of 15 mv RMS at any frequency within the range 100-2000 cps, when vibrated in either of two planes at 10G

Low Pressure Voltage Breakdown Test

Statistical sample tested for voltage breakdown at a pressure of 8 mm Hg, to simulate an altitude of 100,000 feet. Tubes shall not give visual evidence of flashover or corona Bogey Max. 10 Millivolts RMS

operated with Ef = 6.3 volts, Ebb = 150 volts, Rk = 82 ohms (bypassed), $R_L = 10000$ ohms.

peak acceleration. Electrical conditions for this test are the same as for Low Frequency Vibrational Output.

when 300 volts RMS, 60 cps, is applied between the plate

DEGRADATION RATE TESTS

Fatigue

Statistical sample vibrated for a total of six hours, three hours in each of two planes, at a peak acceleration of 10G. Frequency is continuously varied from 30 cps to 2000 cps and back to 30 cps, with a period of ten minutes. Tubes are operated during the test with Ef = 6.3 volts, Eb = 150 volts, and Rk = 82 ohms. Following the test, tubes are evaluated for low frequency vibrational output, heater-cathode leakage, and heater current.

Shock

Statistical sample subjected to 5 impact accelerations of approximately 450G in each of four positions. The accelerating forces are applied by the Navy-type, High Impact (flyweight) Shock Machine using a 30° hammer angle. Tubes are operated during the test with Ef = 6.3 volts, Eb = 150 volts, Ehk = +100 volts, and Rk = 82 ohms. Following the test, tubes are evaluated for low frequency vibrational output, heater-cathode leakage, and heater current.

Stability Life Test

The statistical sample subjected to the Dynamic Life Test is evaluated for percent change in zero-bias transconductance of individual tubes, from the initial reading to readings following 2 hours and 20 hours of the life test.

Survival Rate Life Test

The combined statistical samples subjected to the Dynamic and Pulse Life Tests are evaluated for shorted and open elements following approximately 100 hours of life test.

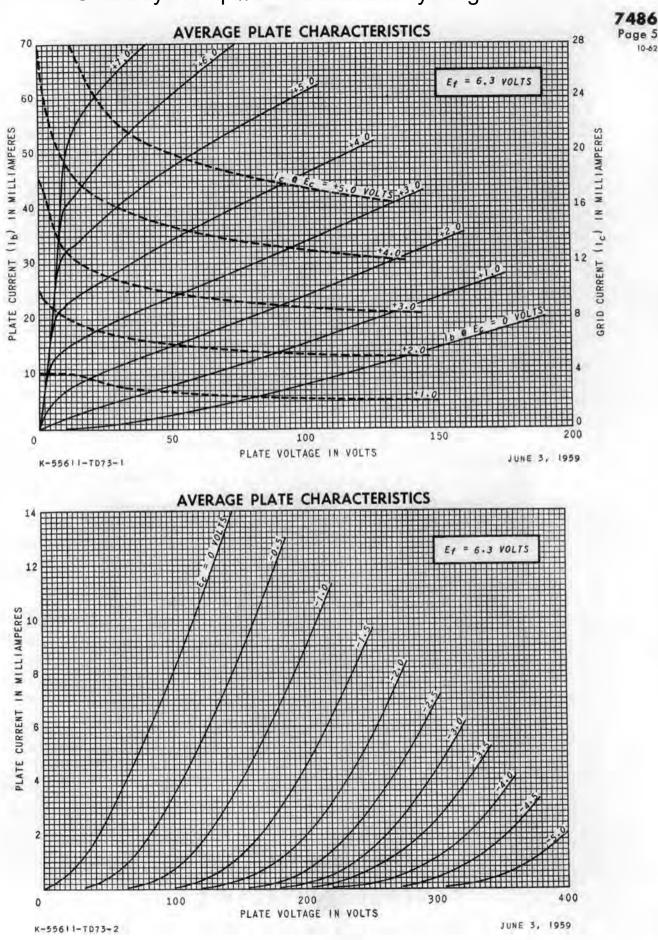
Dynamic Life Test

Statistical sample operated, with a 60 cps grid signal, at maximum rated DC grid current and cathode current for a period of 1000 hours. Heater voltage is cycled (on $1\frac{3}{4}$ hours, off $\frac{1}{4}$ hour). Tubes are evaluated, following 500 and 1000 hours of life test, for shorted or open elements, heater current, oscillator power output, zero-bias transconductance, heater-cathode leakage, and interelectrode leakage resistance.

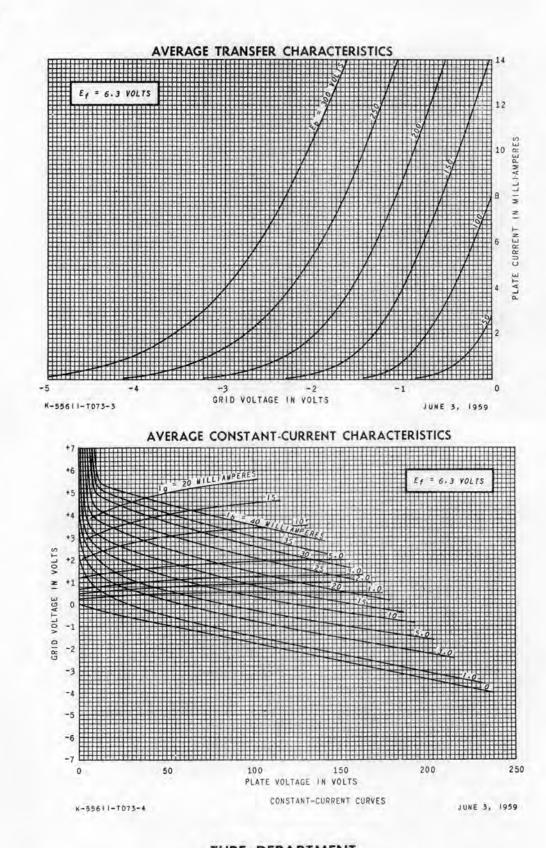
Pulse Life Test

Statistical sample operated with 120 ma peak cathode current, 0.01 duty factor, for 1000 hours. Heater voltage is cycled (on $1\frac{3}{4}$ hours, off $\frac{1}{4}$ hour). Tubes are evaluated, following 500 and 1000 hours of life test, for shorted or open elements, heater current, pulse cathode current, heater-cathode leakage, and interelectrode leakage resistance.

Interface Life Test


Statistical sample operated for 1000 hours with Ef = 6.6 volts, no other voltages applied, and evaluated for cathode interface resistance following the life test.

Heater-Cycling Life Test


Statistical sample operated for 2000 cycles minimum to evaluate and control heater-cathode defects. Conditions of test include Ef = 7.0 volts cycled for one minute on and one minute off, Eb = Ec = 0 volts, and Ehk = 70 volts with heater positive with respect to cathode. Following this test, tubes are evaluated for open heaters, heater-cathode shorts, and heater-cathode leakage current.

Note: The conditions for some of the indicated tests have deliberately been selected to aggravate tube failures for test and evaluation purposes. In no sense should these conditions be interpreted as suitable circuit operating conditions.

7486 Page 6 10-62

GENERAL BELECTRIC

Owensboro, Kentucky

7588 Page 1 3-63

DESCRIPTION AND RATING

The 7588 is a high-mu triode of ceramic-and-metal planar construction. The tube is intended for use as a broadband radio-frequency amplifier at frequencies up to 500 megacycles.

GENERAL

MECHANICAL

Mounting Position—Any§ See Physical Dimensions on page 4 for dimensions and electrical connections.

MAXIMUM RATINGS

ABSOLUTE-MAXIMUM VALUES

Cathode-Coated Unipotential

Heater Characteristics and Ratings

Direct Interelectrode Capacitances1

Plate Voltage	Volts
Positive DC Grid-to-Cathode Voltage0	Volts
Negative DC Grid Voltage	
Plate Dissipation5.5	
DC Cathode Current	Milliamperes

ELECTRICAL

Heater Current + 0.4 Amperes

 Grid to Plate: (g to p)
 2.8 pf

 Input: g to (h+k)
 6.5 pf

 Output: p to (h+k)
 0.075 pf

 Heater to Cathode: (h to k)
 2.6 pf

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of

Heater-Cathode Voltage	
Heater Positive with Respect to Cathode. 50 Vo	olts
Heater Negative with Respect to Cathode. 50 Vo	olts
Grid Circuit Resistance	
With Fixed Bias 0.025 M	egohms
With Cathode Bias	egohms
Envelope Temperature at Hottest Point 250 C	Berning

all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Plate Voltage	Volts
Positive Grid Voltage	Volts
Cathode-Bias Resistor	Ohms
Amplification Factor	

Plate Resistance, approximate	
Transconductance	.45000 Micromhos
Plate Current	
Grid Voltage, approximate	
Ib = 100 Microamperes	-5 Volts
Noise Figure¶	3.0 Decibels

Supersedes 7588 D & R Sheet ET-T1620, dated 6-60

7588 Page 2 3-63

Courtesy of http://BlackRadios.terryo.org

FOOTNOTES

- * The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- \dagger Heater current of a bogey tube at Ef = 6.3 volts.
- ‡ Without external shield.
- One method of mounting the 7588 is to use a stainless-steel "T" bolt (see drawing) to attach the mounting 8 base of the tube to a chassis or circuit board. The "T" bolt should be inserted in the slot in the base of the tube, turned 90 degrees, and attached to the chassis or circuit board with a 4-40 nut and lock washer. Torque used to tighten the nut should not exceed 3 inch-pounds.
- ¶ Measured at 200 megacycles in a grounded-grid amplifier and corrected for second-stage noise figure and diode temperature.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or

elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

INITIAL CHARACTERISTICS LIMITS

Min.	Bogey	Max.	
Heater Current 370 Ef = 6.3 volts 370	400	430	Milliamperes
Plate Current Ef = 6.3 volts, $Eb = 200$ volts, $Rk = 22$ ohms	25	33	Milliamperes
$\label{eq:conductance} \begin{array}{l} Transconductance\\ Ef=6.3 \mbox{ volts, } Eb=200 \mbox{ volts, } Ec=+6 \mbox{ volts, } Rk=270 \mbox{ ohms (bypassed)} \hfill 35000 \end{array}$	45000	55000	Micromhos
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	175	210	
Transconductance Change with Heater Voltage Difference between transconductance at $Ef = 6.3$ volts and trans- conductance at $Ef = 5.7$ volts (other conditions the same) ex- pressed as a percentage of transconductance at $Ef = 6.3$ volts		20	Percent
Grid Voltage Cutoff Ef = 6.3 volts, Eb = 200 volts, Ib = 100 μ a	-5.0	-8.0	Volts
Noise Figure $Ef = 6.3$ volts, $Ebb = 265$ volts, $Ec = 0$ volts, $R_L = 3300$ ohms, (bypassed), $Rk = 22$ ohms, $F = 200 \pm 10$ MC	3.0	4.8	Decibels
$ Interelectrode Capacitances 2.1 \\ Grid to Plate: (g to p). 5.1 \\ Input: g to (h+k). 0.05 \\ Output: p to (h+k). 1.9 \\ Heater to Cathode: (h to k). 19 \\ $	2.8 6.7 0.075 2.6	3.5 8.3 0.1 3.3	pf pf pf pf
Negative Grid Current Ef = 6.3 volts, $Eb = 200$ volts, $Ecc = -1.0$ volts, $Rk = 22$ ohms (bypassed), $Rg = 0.1$ meg	10000	0.5	Microamperes
Heater-Cathode Leakage Current Ef = 6.3 volts, Ehk = 100 volts Heater Positive with Respect to Cathode Heater Negative with Respect to Cathode		20 20	Microamperes Microamperes
Interelectrode Leakage Resistance Ef=6.3 volts. Polarity of applied d-c interelectrode voltage is such that no cathode emission results. Grid to All at 100 volts d-c. Plate to All at 300 volts d-c.	0		Megohms Megohms
Grid Emission Current Ef = 7.0 volts, $Eb = 200$ volts, $Ecc = -15$ volts, $Rg = 0.1$ meg			Microamperes

7588 Page 3

Milliamperes

3.63

SPECIAL PERFORMANCE TESTS

Min. Bogey Max. Grid Recovery Change in Average Plate Current..... Milliamperes Peak Plate Current Backswing. 1.0 2.0

Tubes with poor grid recovery affect circuit operation when the grid is driven positive by a pulse of signal or noise, somewhat as if a parallel RC circuit were in series with the grid. This effect may occur in tubes of any type but is unimportant in many applications. In the majority of 7588 tubes the effect is negligible, but to eliminate the few in which it may be excessive, tubes are tested under the following conditions: Ef = 6.3 volts, Ebb = 250 volts, $R_L = 0.01$ meg. EC is adjusted for Ib = 10 ma.

Upon application to the grid of a pulse driving it 3 volts positive with respect to cathode (prr = 60 pps, duty cycle = 0.12%) the change in average plate current is noted, and the peak plate current backswing is measured. The following diagram shows qualitatively the plate current-time relationship for a tube (with poor grid recovery) subjected to this test:

PLATE CURRENT VS TIME -GRID RECOVERY TEST

Low Frequency Vibrational Output	Min.	Bogey	Max.	
Statistical sample is subjected to vibration in each of two planes at 40 cps, with peak acceleration 15G. Tube is operated with $Ef =$ 6.3 volts, $Ebb = 250$ volts, $Rk = 68$ ohms (bypassed), $R_L = 2000$ ohms.				
ohms			25	Millivolts
Variable Frequency Vibrational Output				RMS
Statistical sample is subjected to vibration according to the pro- cedure given below. Tube is operated with $\mathbf{E} \mathbf{f} = 6.3$ up to $\mathbf{E} \mathbf{b}$.				
250 volts, $Rk = 68$ ohms (bypassed), $R_L = 2000$ ohms			75	Millivolts RMS

The variable-frequency vibration test shall be performed as follows:

- 1. The frequency shall be increased from 100 to 2000 cps with approximately logarithmic progression in 3 ± 1 minutes. The return sweep (2000 to 100 cps) is not required.
- 2. The tube shall be vibrated with simple harmonic motion in each of two planes: first, parallel to the cylindrical axis; second, perpendicular to the cylindrical axis and parallel to a line through the major axis of a terminal lug. At all frequencies from 100 to 2000 cps, the total harmonic distortion of the acceleration wave form shall be less than 5%.
- 3. The peak acceleration shall be maintained at 10 ± 1.0 G throughout the test.
- 4. The value of the alternating voltage produced across the load resistor (RL), as a result of the vibration, shall be measured with a suitable device having a response to the RMS value of the voltage to within ± 0.5 db of the response at 400 cps for the frequency range of 100 to 3000 cps, and having a band-pass filter with an attenuation rate of 24 db per octave below the low frequency cutoff point of 50 cps and above the high frequency cutoff point of 5000 cps. The meter shall have a dynamic response characteristic equivalent to or faster than a VU meter (operated in accordance with ASA Standard No. C16.5-1954).

Low Pressure Voltage Breakdown Test

Statistical sample tested for voltage breakdown at a pressure of 8mm Hg, to simulate an altitude of 100,000 feet. Tubes shall not give visual evidence of flashover or corona when 300 volts RMS, 60 cps, is applied between the plate and grid terminals.

DEGRADATION RATE TESTS

Fatigue

Statistical sample vibrated for a total of six hours, three hours in each of two planes, at a peak acceleration of 10 G. Frequency is continuously varied from 30 cps to 2000 cps and back to 30 cps, with a period of ten minutes. Tubes are operated during the test with Ef = 6.3 volts, Eb = 250 volts, and Rk = 68 ohms. Following the test, tubes are evaluated for low frequency vibrational output, heater-cathode leakage, heater current, and transconductance.

7588

Page 4 3-63

DEGRADATION RATE TESTS (Continued)

Shock

Statistical sample subjected to 5 impact accelerations of approximately 450 G in each of four positions. The accelerating forces are applied by the Navy-type, High Impact (flyweight) Shock Machine using a 30° hammer angle. Tubes are mounted by T-bolt with 3 inch-pounds torque, and operated during the test with Ef = 6.3 volts, Eb = 250 volts, Ehk = +100 volts, Rg = 0.1 meg, and Rk = 68 ohms. Following the test, tubes are evaluated for low frequency vibrational output, heater-cathode leakage, heater current, and transconductance.

Stability Life Test

The statistical sample subjected to the Intermittent Life Test is evaluated for percent change in transconductance of individual tubes, from the initial reading to readings following 2 hours and 20 hours of the life test.

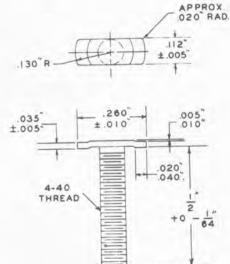
Survival Rate Life Test

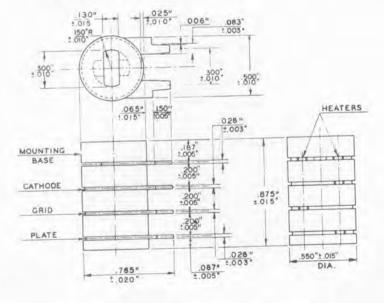
The statistical sample subjected to the Intermittent Life Test is evaluated for shorted and open elements, and transconductance, following approximately 100 hours of life test.

Intermittent Life Test

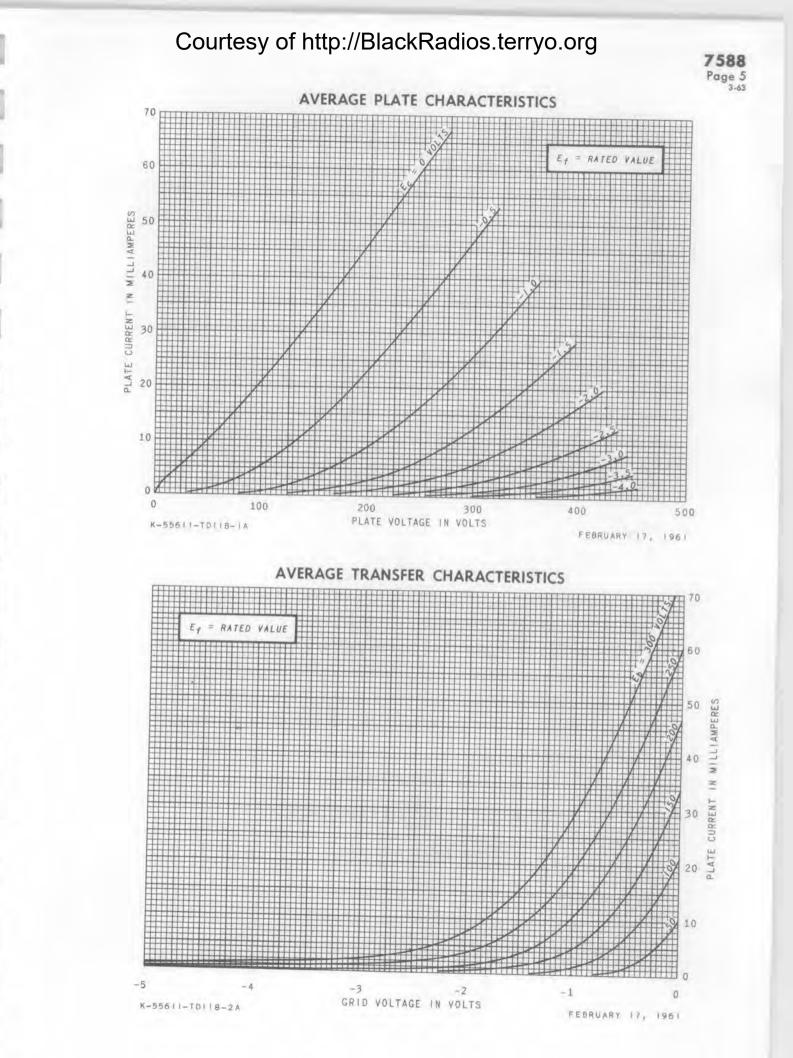
Statistical sample operated 1000 hours under the following conditions: Ef = 6.3 volts, Eb = 200 volts, Ecc = +6 volts, Ehk = -70 volts, Rk = 270 ohms, Rg = 0.1 meg. Heater voltage is cycled (on 134 hours, off 34 hour). Tubes are evaluated, following 500 and 1000 hours of life test, for shorted or open elements, heater current, transconductance, negative grid current, noise figure, heater-cathode leakage, and interelectrode leakage resistance.

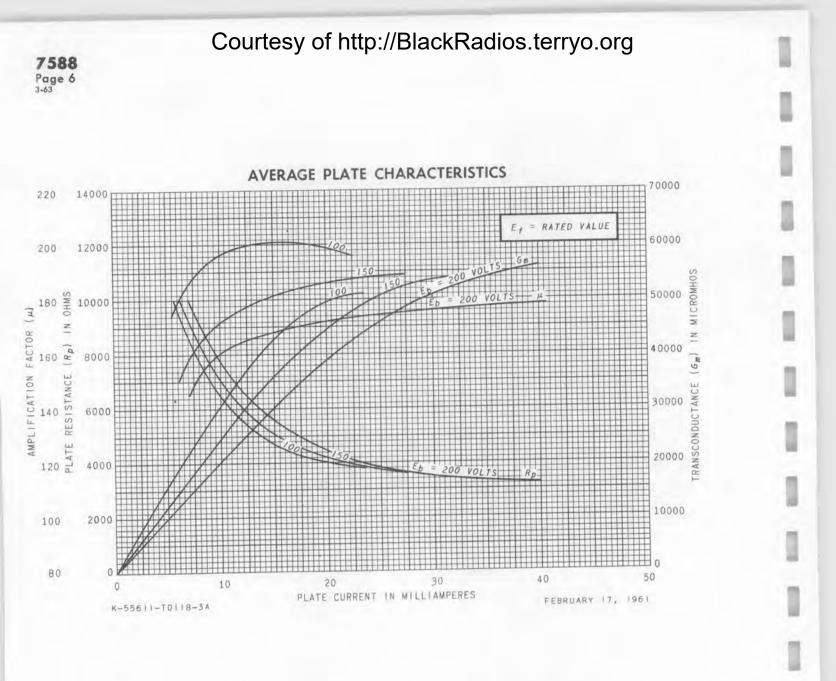
Interface Life Test


Statistical sample operated for 1000 hours with Ef = 6.6 volts, no other voltages applied, and evaluated for cathode interface resistance following the life test.


Heater-Cycling Life Test

Statistical sample operated for 2000 cycles minimum to evaluate and control heater-cathode defects. Conditions of test include Ef = 7.5 volts cycled for one minute on and one minute off, Eb = Ec = 0 volts, and Ehk = 70 volts with heater positive with respect to cathode. Following this test, tubes are evaluated for open heaters, heater-cathode shorts, and heater-cathode leakage current.


MOUNTING BOLT

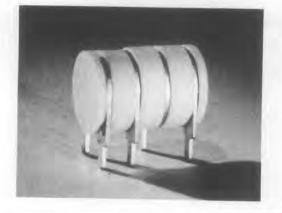


Maximum eccentricity of insulators 0.015 in. from center line.

Owensboro, Kentucky

Df

pf


pf

Df

METAL-CERAMIC TRIODE

7720 Page 1

age 1 3-63

ELECTRICAL

Heater Voltage, AC or DC*......6.3 ±0.3 Volts

Input: g to (h+k).....1.8

Output: p to (h+k) 0.032

Heater to Cathode: (h to k)1.5

-DESCRIPTION AND RATING

The 7720 is a high-mu triode of ceramic-and-metal planar construction primarily intended for use as an oscillator in the ultra-high-frequency range.

GENERAL

MECHANICAL

Mounting Position—Any See outline drawing on page 2 for dimensions and electrical connections.

MAXIMUM RATINGS

ABSOLUTE MAXIMUM VALUES

Cathode-Coated Unipotential

Heater Characteristics and Ratings

Direct Interelectrode Capacitances§

Plate Voltage	Volts
Positive DC Grid Voltage 0	Volts
Negative DC Grid Voltage 50	Volts
Peak Negative Grid Voltage	Volts
Plate Dissipation	Watt
DC Grid Current 2.2	Milliamperes
DC Cathode Current	Milliamperes
Peak Cathode Current	Milliamperes

Heater-Cathode Voltage

Heater Positive with Respect to Cathode	Volts	
Heater Negative with Respect to		
Cathode	Volts	
C-H C H D H	Ohms	
Bulb Temperature at Hottest Point** 250	С	

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or

elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

UHF OSCILLATOR SERVICE

7720

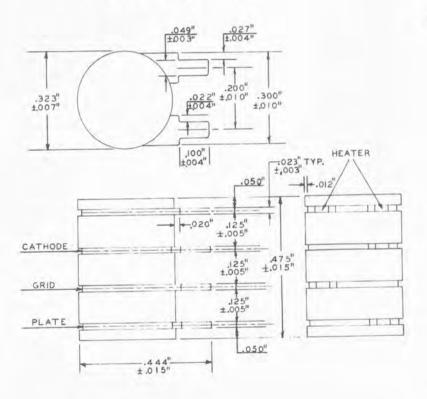
Page 2 3-63

CHARACTERISTICS AND TYPICAL OPERATION

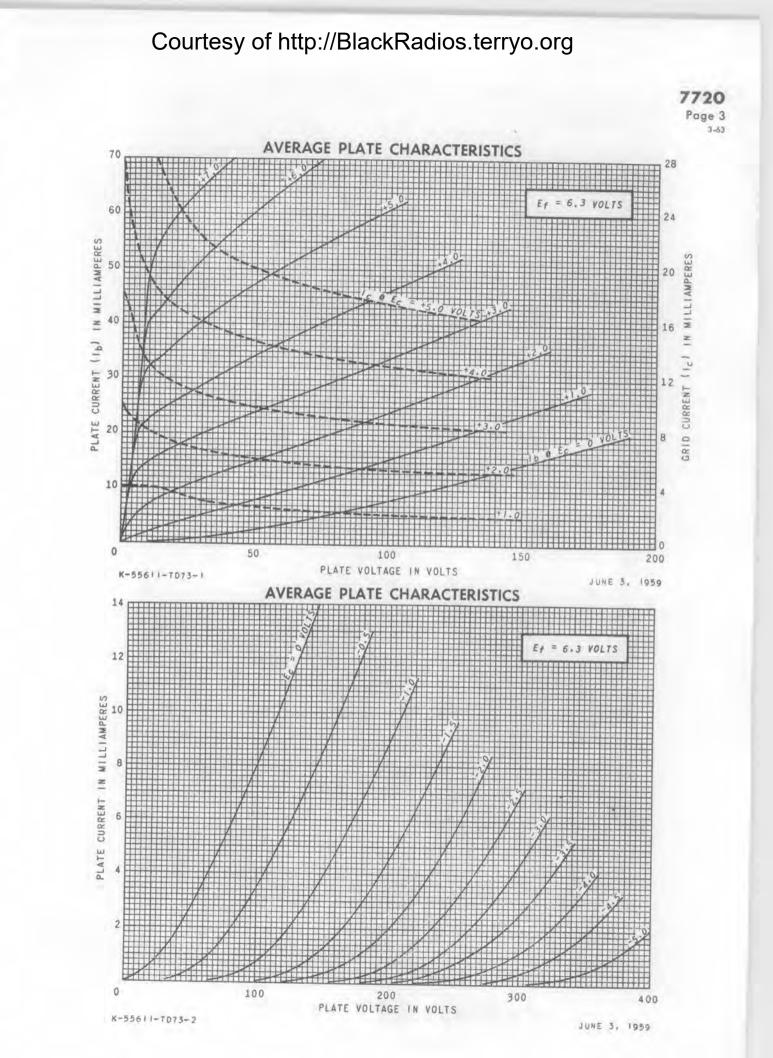
AVERAGE CHARACTERISTICS

Plate Voltage	100	150	Volts
Grid Voltage	0		Volts
		82	Ohms
Amplification Factor		90	
Transconductance 11,	500	10,500	Micromhos
Plate Current.	9.0		Milliamperes

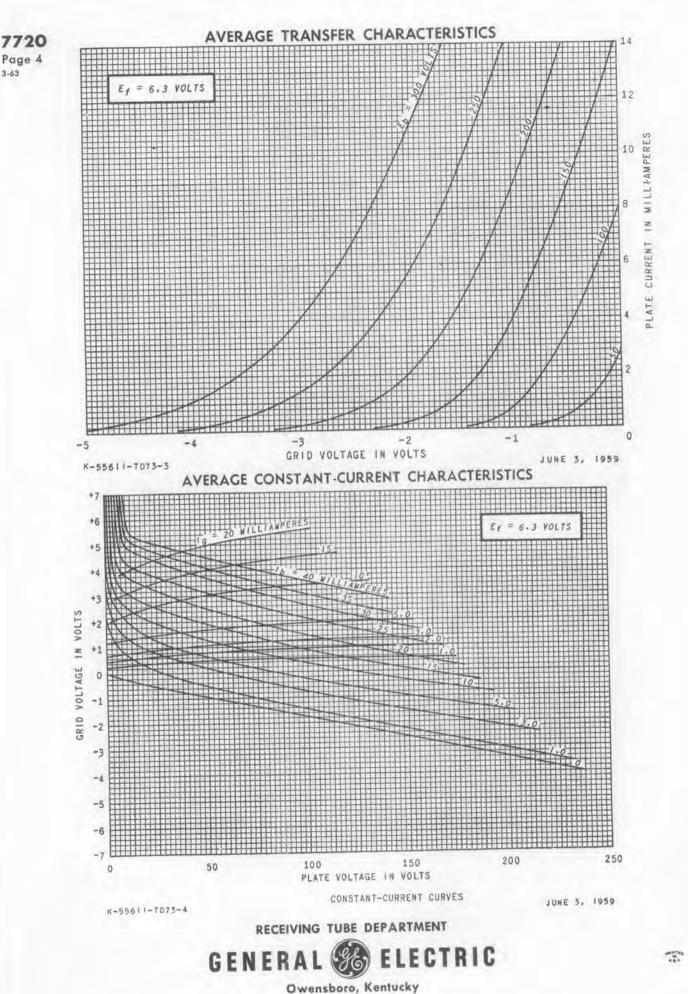
Plate Voltage	150	Volts
Grid Resistor	7000	Ohms
Plate Current	4.0	Milliamperes
Frequency	450	Megacycles
Grid Current	0.5	Milliamperes
Power Output, approximate	100	Milliwatts


FOOTNOTES

- * The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- \dagger Heater current of a bogey tube at Ef = 6.3 volts.


t Without external shield.

**For applications where long life is a primary consideration, it is recommended that the envelope temperature be maintained below 175 C.


OUTLINE DRAWING

NOTE: Maximum eccentricity of insulators 0.010 in. from center line.

7768

7768 Page 1 10-62

METAL-CERAMIC TRIODE

-DESCRIPTION AND RATING-

FOR BROADBAND RADIO-FREQUENCY AMPLIFIER APPLICATIONS

The 7768 is a high-mu triode of ceramic-and-metal planar construction primarily intended for use as a broadband radio-frequency amplifier. The 7768 is especially suited for use where unfavorable conditions of mechanical shock, mechanical vibration, and nuclear radiation are encountered.

GENERAL

ELECTRICAL

Cathode-Coated Unipotential	
Heater Characteristics and Ratings	
Heater Voltage, AC or DC*	Volts
Heater Current† 04	Amperes
Direct Interelectrode Capacitances!	miperes
Grid to Plate: (g to p)	nf
Input: g to (h+k)	pf
Output: p to (h+k)	pf
Heater to Cathode: (h to k)	
	pf

MECHANICAL

Mounting Position-Any

See Outline Drawing on page 3 for dimensions and electrical connections

MAXIMUM RATINGS

ABSOLUTE-MAXIMUM VALUES

Plate Voltage	Volts
Positive DC Grid Voltage	Volts
Negative DC Grid Voltage	Volts
Plate Dissipation	Watts
DC Cathode Current	Milliamperes
Heater-Cathode Voltage	

Heater Positive with Respect to	
Cathode	Volts
Heater Negative with Respect to	
Cathode	Volts
Grid Circuit Resistance	
With Cathode Bias0.01	Megohms
Envelope Temperature at Hottest	
Point§250	C

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

7768 Page 2 10-62

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Plate Voltage 200	Volts
Grid Voltage +6.0	Volts
Cathode-Bias Resistor 270	Ohms
Amplification Factor	
Plate Resistance, approximate	Ohms

Transconductance Plate Current	50000	Micromhos Milliamperes
Grid Voltage, approximate		Volts

- FOOTNOTES ‡ Without external shield.
- * The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- § Operation below the rated maximum envelope temperature is recommended for applications requiring the longest possible tube life.
- + Heater current of a bogey tube at Ef = 6.3 volts.

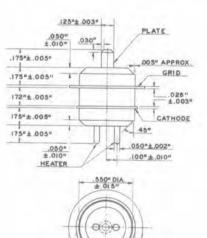
INITIAL CHARACTERISTICS LIMITS

	Min.	Bogey	Max.	
Heater Current Ef = 6.3 volts.	370	400	430	Milliamperes
Plate Current $Ef = 6.3$ volts, $Eb = 200$ volts, $Rk = 22$ ohms (bypassed)	14	22	30	Milliamperes
$\label{eq:conductance} \begin{split} & \text{Transconductance} \\ & \text{Ef} = 6.3 \text{ volts, } \text{Eb} = 200 \text{ volts, } \text{Rk} = 22 \text{ ohms (bypassed)} \end{split}$	40000	50000	60000	Micromhos
$\begin{array}{llllllllllllllllllllllllllllllllllll$	170	225	280	
Grid Voltage Cutoff $Ef = 6.3$ volts, $Eb = 200$ volts, $Ib = 100 \ \mu a$		-3.0	-5.0	Volts
Noise Figure $Ef = 6.3$ volts, $Ebb = 280$ volts, $R_L = 3300$ ohms, $Rk = 22$ ohms (bypassed), $F = 200$ MC ± 10 mc		3.0	4.8	Decibels
Interelectrode Capacitances Grid to Plate: $(g to p)$ Input: $g to (h+k)$ Output: $p to (h+k)$ Heater to Cathode: $(h to k)$.	1.3 4.5 0.01 1.5	1.7 6.0 0.018 2.4	2.1 7.5 0.026 3.3	pf pf pf pf
Negative Grid Current Ef = 6.3 volts, $Eb = 200$ volts, $Ecc = -1.0$ volts, $Rk = 22$ ohms (bypassed), $Rg = 0.1$ meg.		- (83	0.5	Microamperes
Heater-Cathode Leakage Current Ef = 6.3 volts, Ehk = 100 volts Heater Positive with Respect to Cathode Heater Negative with Respect to Cathode	,		20 20	
Interelectrode Leakage Resistance Ef = 6.3 volts. Polarity of applied d-c interelectrode voltage is such that no cathode emission results. Grid to A11 at 100 volts d-c Plate to A11 at 300 volts d-c.	50			
Grid Emission Current $Ef = 7.0$ volts, $Eb = 200$ volts, $Ecc = -15$ volts, $Rg = 0.1$ meg.			2.0	Microamperes

SPECIAL PERFORMANCE TESTS

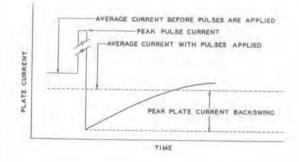
	Min.	Bogey	Max.	
Grid Recovery				
Change in Average Plate Current	34899	111.4.1	1.0	Milliamperes
Peak Plate Current Backswing . Tubes with poor grid recovery affect circuit operation when the grid is driven positive by a pulse of signal or noise, somewhat as if a parallel RC circuit were in series with the grid. This effect may occur in tubes of any type, but is unimportant in many applications. In the majority of 7768 tubes the effect is negligible, but to eliminate the few in which it may be excessive, tubes are tested under the following conditions: $Ef = 6.3$ volts. Ebb = 250 volts			2.0	Milliamperes

 $R_L = 0.01$ meg. Ec is adjusted for Ib = 10 ma. Upon application to the grid of a 3 volt positive pulse (prr = 60 pps, duty factor = 0.0012) the change in average plate current is noted, and the peak plate current backswing is measured. The following diagram shows qualitatively the plate current-time relationship for a tube (with poor grid recovery) subjected to this test.


Low Frequency Vibrational Output

Statistical sample is subjected to vibration in each of two planes at 40 cps, with peak acceleration 15G. Tube is operated with Ef = 6.3 volts, Ebb = 250 volts, Rk = 68 ohms (by-passed), $R_L = 2000$ ohms

Low Pressure Voltage Breakdown Test


Statistical sample tested for voltage breakdown at a pressure of 8mm Hg, to simulate an altitude of 100,000 feet. Tubes shall not give visual evidence of flashover or corona when 300 volts RMS, 60 cps, is applied between the plate and grid terminals.

OUTLINE DRAWING

.603"DIA. ±.005" .753" DIA. ±.005"

PLATE CURRENT VS. TIME -GRID RECOVERY TEST

7768 Page 3 10-62

50 Millivolts RMS

DEGRADATION RATE TESTS

Fatigue

Statistical sample vibrated for a total of six hours, three hours in each of two planes, at a peak acceleration of 10G. Frequency is continuously varied from 30 cps to 2000 cps and back to 30 cps, with a period of ten minutes. Tubes are operated during the test with Ef = 6.3 volts, Eb = 250 volts, and Rk = 68 ohms. Following the test, tubes are evaluated for low frequency vibrational output, heater-cathode leakage, heater current, and transconductance.

Shock

Statistical sample subjected to 5 impact accelerations of approximately 450G in each of four positions. The accelerating forces are applied by the Navy-type, High Impact (Hyweight) Shock Machine using a 30° hammer angle. Tubes are operated during the test with Ef = 6.3 volts, Eb = 250 volts, Ehk = +100 volts, and Rk = 68 ohms. Following the test, tubes are evaluated for low frequency vibrational output, heater-cathode leakage, heater current, and transconductance.

Stability Life Test

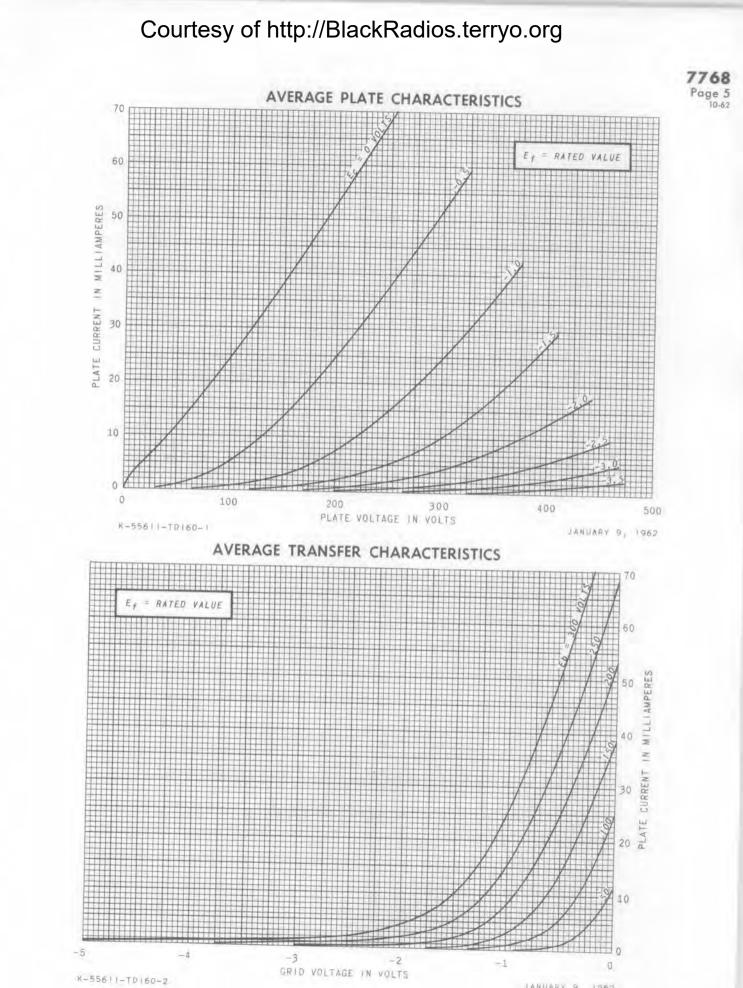
The statistical sample subjected to the Intermittent Life Test is evaluated for percent change in zero-bias transconductance of individual tubes, from the initial reading to readings following 2 hours and 20 hours of the life test.

Survival Rate Life Test

The statistical sample subjected to the Intermittent Life Test is evaluated for shorted and open elements and transconductance following approximately 100 hours of life test.

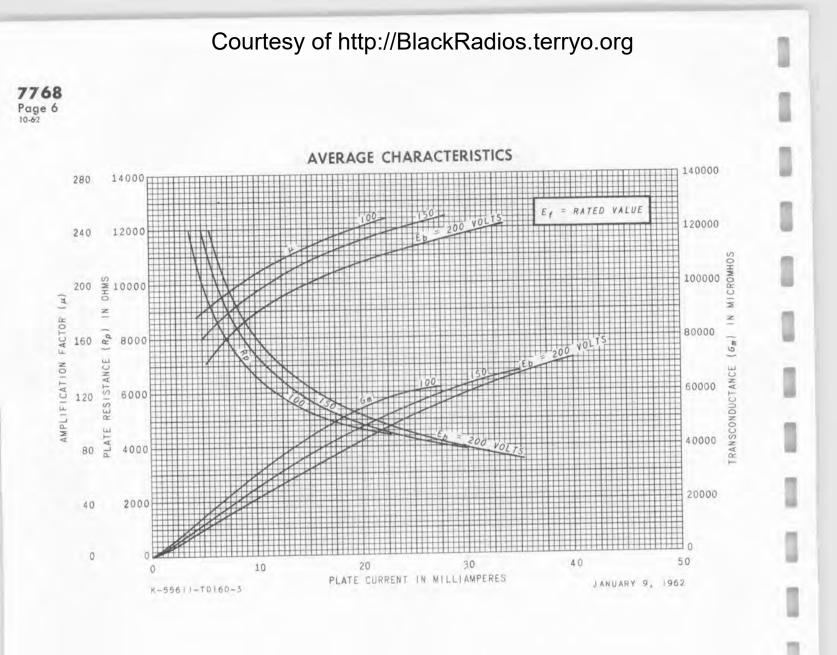
Intermittent Life Test

Statistical sample operated for 1000 hours under the following conditions: Ef = 6.3 volts (cycled—on 134 hours, off 14 hour), Eb = 200 volts, Ecc = +7 volts, Ehk = -70 volts d-c, Rk = 270 ohms, and Rg = 0.01 meg. Tubes are evaluated, following 500 and 1000 hours of life test, for shorted or open elements, heater current, grid current, transconductance, noise figure, heater-cathode leakage, and interelectrode leakage resistance.


Interface Life Test

Statistical sample operated for 1000 hours with Ef = 6.6 volts, no other voltages applied, and evaluated for cathode interface resistance following the life test.

Heater-Cycling Life Test


Statistical sample operated for 2000 cycles minimum to evaluate and control heater-cathode defects. Conditions of test include Ef = 7.5 volts cycled for one minute on and one minute off, Eb = Ec = 0 volts, and Ehk = 70 volts with heater positive with respect to cathode. Following this test, tubes are evaluated for open heaters, heater-cathode shorts, and heater-cathode leakage current.

Note: The conditions for some of the indicated tests have deliberately been selected to aggravate tube failures for test and evaluation purposes. In no sense should these conditions be interpreted as suitable circuit operating conditions.

16

JANUARY 9, 1962

RECEIVING TUBE DEPARTMENT

Owensboro, Kentucky

Courtesy of http://BlackRadios.terryo.org ELECTRONIC

Planar Triode

Page 1 10-66

7815

TUBES

INNOVATIONS

IN ACTION

The 7815 is a high-mu, ceramic-and-metal, planar triode designed for use as a gridpulsed or plate-pulsed oscillator, frequency multiplier, or power amplifier at frequencies up to 3000 megacycles.

GENERAL

ELECTRICAL

Cathode - Coated Unipotential

Heater Characteristics and Ratings Heater Voltage, AC or DC * Volts Heater Current‡ 1.0 Amperes Direct Interelectrode Capacitances§ Grid to Plate: (g to p) . . 2.05 pf Grid to Cathode: (g to k). . . 6.3 pf Plate to Cathode: (p to k), Maximum , 0.035 pf

MECHANICAL

Cooling - Conduction and Convection Net Weight, approximate. 1.7 Ounces

MAXIMUM RATINGS AND TYPICAL OPERATION

PLATE-PULSED OSCILLATOR OR AMPLIFIER-CLASS C

MAXIMUM RATINGS-ABSOLUTE-MAXIMUM VALUES

Peak Pulse Plate-Supply Vol Pulse Length	tag	e.												2				3500	Volts
a dioc hengen			1.00																Microseconds
																			nicroseconds
																			Volts
Positive Peak Grid Voltage Negative Peak Grid Voltage	0		•		•	•	•		•				•		.+			. 250	Volts
Negative Peak Grid Voltage Plate Dissipation	•	•			•	•												. 750	Volts
																			Watts
																			Watts
Be and out tont a																			Milliamperes
Average Grid Current		0															+	+ 3.0	Amperes
Average Grid Current		÷.	•	•		•						12.1						. 5.0	Milliamperes
Frequency	•	•	•	•	•	•		•	1	•								3000	Megacycles

TYPICAL OPERATION-OSCILLATOR AT 2500 MEGACYCLES Heater Voltage

Peak Plate-Supply Voltage	•	٠		•	٠											2		1	. 5.8	Volts
Pulse Length		•			•	•	٠			•		2		\mathbf{x}_{i}^{*}					. 5	Microseconds
Duty Factor		•		•	1		•	•									.+		0.0030	and the state of the
Peak Plate Current Average Plate Current				•	•		1		1						+				. 3.0	Amperes
Average Grid Current .						1	1						•						. 9.0	Milliamperes
Average Grid Current . Peak Useful Power Output, a	ppro	oxi	nate			•	•			•	2								. 3.0	Milliamperes
······································	PPLS	UN LI	inca cas		•	•					20		۰.	14.1		+		1.41	2000	Watts

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an

express written agreement to the contrary, General Electric Company assumes no idebility for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

Operating Position - Any Maximum Anode Temperature 250 C

MAXIMUM RATINGS AND TYPICAL OPERATION (Continued)

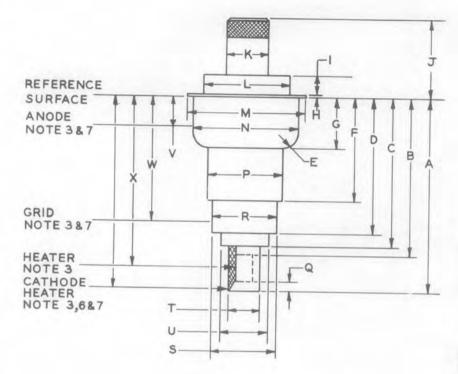
GRID-PULSED OSCILLATOR OR AMPLIFIER-CLASS C

MAXIMUM RATINGS-ABSOLUTE-MAXIMUM VALUES

DC Plate Voltage																			2000	Volts
DC Plate Voltage		•			1.0												100		6	Microseconds
Pulse Length																1	1.5		0.0033	
D. to. Deckaw																			0.0000	17-14-
Nogative DC Grid Voltage .									1.0			- A.I.						•	. 130	Volts
Positive Peak Grid Voltage	-	1					1.1				1.1								, 250	Volts
Positive Peak Grid Vollage			•	•						1		1.5			- 91		1		. 750	Volts
Negative Peak Grid Voltage		. •			•			•						1					10	Watts
Plate Dissipation			1.0							•		*							2.0	Watts
a. 11 Dissignation						1.2														
Lunger Blate Current					1.00															Milliamperes
Peak Plate Current	•			1	1	1					1.1		1.						. 3.0	Amperes
Peak Plate Current										10	- 51		1						. 5.0	Milliamperes
Average Grid Current			1.4.1																	Megacycles
Frequency	•				•		•				•		1			1	1		3000	negacycres

TYPICAL OPERATION-AMPLIFIER AT 1100 MEGACYCLES

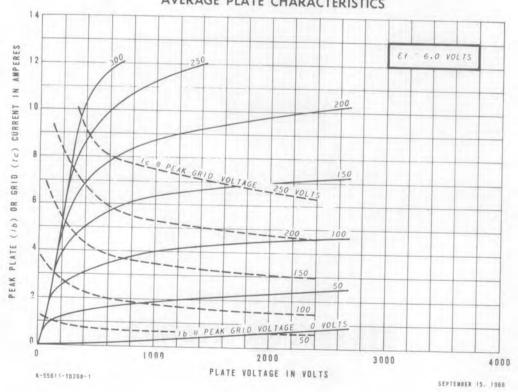
																		1.200		. 6.0	Volts
Heater Voltage .									1.0					1.1				•		1700	Volts
no. no										 											1.4.4.4.4
DC Plate Voltage.										 									1.0	- 45	Volts
no o 11 11-14-00										 											Microseconds
n 1										 					•						MICIOSECONds
Pulse Length	÷.,							÷.								1.1			1.1	0.001	
Duty Factor											1.2	•							1	1 0	Amperes
Deal Dlata Current												 	-	-						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
reak riace ourient	•				1			1						1.1						. 1.1	Amperes
Peak Grid Current			1.				•										10.			400	Watts
not down Derson dunie	ne	P111	0.0	20	pro	vim	ate	1.2													
Driving rower durin	чБ		00,	-P			_									1.1	1.1			.1500	Watts
Peak Useful Power (Jut	put	, a	ppr	oxi	mac	e.									1.2					


Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

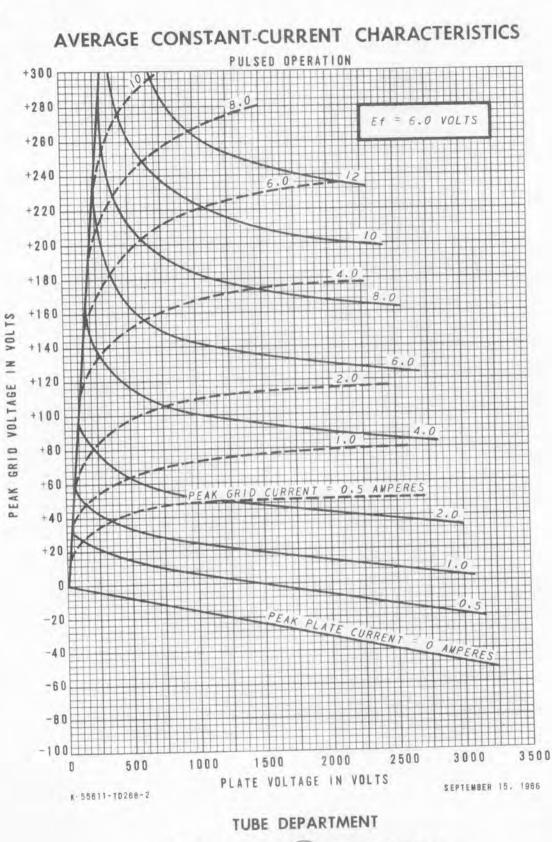
NOTES


- * The equipment designer should design the equipment so that heater voltage is centered at some value within the range of 5.0 to 6.0 volts. Heater voltage variations about the center value should be kept as small as practical and should not, in any case, exceed ±5%. The optimum center value of heater voltage depends on the cathode current and on other parameters of circuit design and operation. For specific recommendations, contact your General Electric tube sales representative.
- # Heater Current of a bogey tube at Ef = 6.0 volts.
- § Measured without heater voltage.

Ref.	Inc	hes
Re1,	Minimum	Maximum
A	1.815	1.875
В		1.534
С		1.475
D	1.289	1.329
Е		0.100
F	0.970	1.010
G	0.462	0.477
H		0.040
I		0.185
J	0.766	0.826
K	0.427	0.447
L	0.840	0.860
M	1.180	1.195
N	1.025	1.035
P	0.752	0.792
Q		0.086
R	0.655	0.665
S		0.545
Т	0.213	0.223
U	0.315	0.325

DIMENSIONS FOR ELECTRODE CONTACT AREA (INCHES)

Ref.	Dimension	Contact
V	0.198±0.163	Anode
W	1.225±0.040	Grid
X	1.631‡0.097	Heater
Y	1.645±0.170	Cathode


AVERAGE PLATE CHARACTERISTICS

1

815 age 3 10-66

DIMENSIONS FOR OUTLINE (INCHES)

7815 Page 4 10-66

Owensboro, Kentucky

GENERAL SE

ELECTRIC

Page 1 10-66

7815R

TUBES

Planar Triode

The 7815R is a high-mu, ceramic-and-metal, planar triode designed for use as a gridpulsed or plate-pulsed oscillator, frequency multiplier, or power amplifier at frequencies up to 3000 megacycles.

GENERAL

ELECTRICAL

Cathode - Coated Unipotential

Heater Characteristics and Ratings Heater Voltage, AC or DC * Volts Heater Current‡ 1.0 Amperes . . Direct Interelectrode Capacitances§ Grid to Plate: (g to p) . . 2.05 pf Grid to Cathode: (g to k). . . 6.3 pf Plate to Cathode: (p to k), Maximum 0.035 Df

MECHANICAL

MAXIMUM RATINGS AND TYPICAL OPERATION

PLATE-PULSED OSCILLATOR OR AMPLIFIER-CLASS C

MAXIMUM RATINGS-ABSOLUTE-MAXIMUM VALUES

Peak Pulse Plate-Supply Volta	ge.			1.00											A 10 M 10	
Peak Pulse Plate-Supply Volta Pulse Length	0					•									3500	Volts
																Microseconds
																Contraction and the second
																Volts
Positive Peak Grid Voltage . Negative Peak Grid Voltage											1				. 250	Volts
Plate Dissipation	1.2							1	× .				•		. 750	Volts
Plate Dissipation	· ·			1	•				1.5			•			. 10¶	Watts
Grid Dissipation			•												. 2.0	Watts
																Milliamperes
										1.0					2 0	Amperes
n and a second s	-			10. II.					1.0	10.0					FO	Milliamperes
Frequency		•	•		*	•	٠								3000	Megacycles

TYPICAL OPERATION-OSCILLATOR AT 2500 MEGACYCLES

Peak Plate-Supply Voltage					4														5	5.8	Volts
Juce Dupply follage.																					
																					Microseconds
Peak Plate Current						•			•	•			•			•				0.0030	
Average Plate Current Average Grid Current		1		2	1	0	1	0	1			3	•	•	•					. 3.0	Amperes
Average Grid Current . Peak Useful Power Output					1	2		2		1		1			•	1		1		. 9.0	Milliamperes
Peak Useful Power Output, a	appr	oxi	mat	e.					1		2			1		1	•	*		. 3.0	Milliamperes
																				2000	Watts

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an

express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

MAXIMUM RATINGS AND TYPICAL OPERATION (Continued)

GRID-PULSED OSCILLATOR OR AMPLIFIER-CLASS C

MAXIMUM RATINGS-ABSOLUTE-MAXIMUM VALUES

																	2000	Volts
DC Plate Voltage	1					1		1		1.5							. 6	Microseconds
Pulse Length						•	1.00	100		•	•				1		0 0033	
D to Decker										-								Volts
Manutice DC Crid Valtage	1.0			1000														
- I.I. D. I. O.I.I. Valkage																		Volts
Positive Peak Grid Vollage				•											1.1	1.2	. 750	Volts
Negative Peak Grid Voltage		- 5	1.0														105	Watts
Plata Discipation			1.1									-		-				Watts
Average Plate Current	1.0							1.0			 1.0	14		1.0				Milliamperes
Peak Plate Current										1.1	 				16		. 3.0	Amperes
Peak Plate Current				•	•				- 1	1						1.1	. 5.0	Milliamperes
Average Grid Current								. *	*				10			10	3000	Megacycles
Frequency			14					1	•	*			1	•		1	5000	

TYPICAL OPERATION-AMPLIFIER AT 1100 MEGACYCLES

																	1.0		12	1.1	1.0	. 6.0	Volts
Heater Voltage .	11			÷.,	1						1					1		•				1700	Volts
																							Volts
no o 11 Walkers														-									Microseconds
L													 										MICroseconds
Duty Factor	3			10						12							141	÷.,				0,001	
Duty Factor	•			•					10			12					1.1					. 1.9	Amperes
Peak Plate Current	۰.	1			1	•																. 1.1	Amperes
Peak Grid Current						1.		14	1.1	1.0					•						1	400	Watts
n 1 1 . Davier dreader		D.1	00	97	nro	x i m	ate	1.2			1.00		1.1										Watts
Peak Useful Power (Jut	put	, a	ppr	oxi	mat	e.						 •	1							*	1500	walls

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

NOTES

- * The equipment designer should design the equipment so that heater voltage is centered at some value within the range of 5.0 to 6.0 volts. Heater voltage variations about the center value should be kept as small as practical and should not, in any case, exceed ±5%. The optimum center value of heater voltage depends on the cathode current and on other parameters of circuit design and operation. For specific recommendations, contact your General Electric tube sales representative.
- + Heater current of a bogey tube at Ef = 6.0 volts.
- Measured without heater voltage.
- I Plate dissipation of 100 watts is permissible with forced-air cooling.

PHYSICAL DIMENSIONS

NOTE 5

RADIATOR

NOTES 4 AND 6

REFERENCE SURFACE

Ŵ

-G

S

-Z

HEATER AND CATHODE

CONTACT SURFACE NOTE 2

10-66

Ref.	Incl	hes
Aer.	Minimum	Maximum
A	0.105	0.145
В	0.650	0.850
C	1.234	1.264
D	0.766	0.826
E	0.125	0.185
F		0.040
G	0.025	0.046
M	1.180	1.195
N	1.025	1.035
P	0.752	0.792
R	0.655	0.665
S	0.462	0.477
T	0.970	1.010
U	1.289	1.329
V		1.475
W		1.534
Y	1.815	1.875
Z		0.086
AA	0.213	0.223
BB	0.315	0.325
CC		0.545

DIMENSIONS FOR ELECTRODE CONTACT AREA (INCHES)

Ref.	Dimension	Contact
H	0.198±0.163	Plate
J	1.225±0.040	Grid
K	1.631±0.097	Heater
L	1.645±0.170	Cathode

NOTES

PLATE CONTACT

SURFACE NOTE I

NOTE 4

GRID CONTACT SURFACE NOTE 3

- The total indicated runout of the plate contact surface with respect to the cathode contact surfaces will not exceed 0.020 inch.
- The total indicated runout of the cathode contact surface with respect to the heater contact surfaces will not exceed 0.012 inch.
- The total indicated runout of the grid contact surface with respect to the cathode contact surface will not exceed 0.020 inch.
- 4. Do not clamp or locate on this surface.

E-

HEÉ

DD

HEATER CONTACT

SURFACE NOTE 2

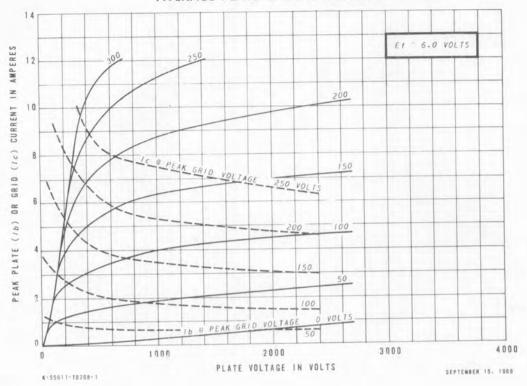
AA

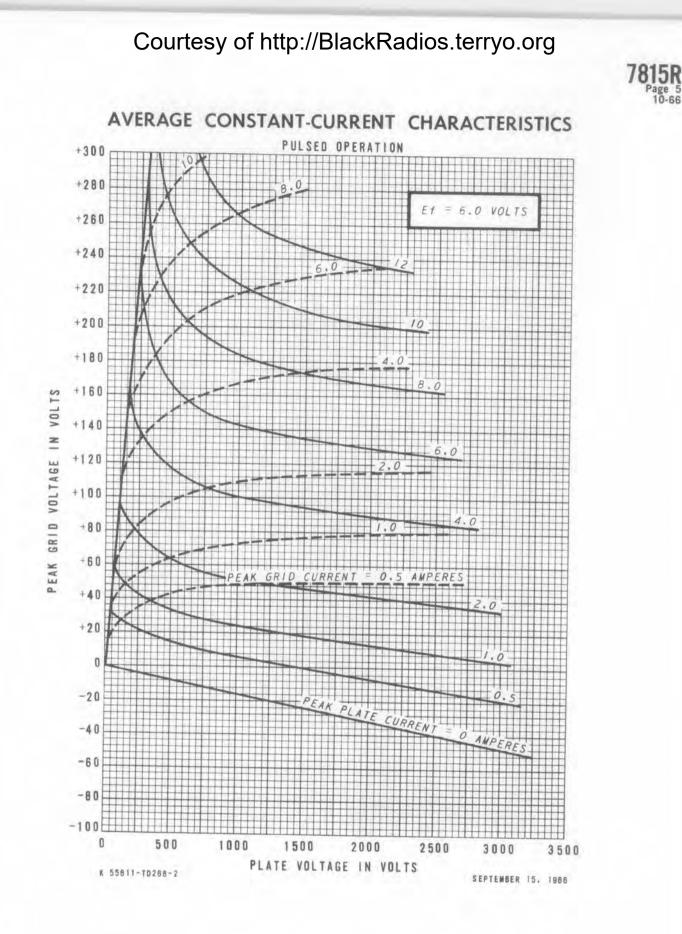
BB

CC

8

-


F


- 5. Hole provided for tube extractor through the top fin only.
- 6. Measure plate shank temperature on this surface.

AVERAGE PLATE CHARACTERISTICS

5R

Page 4

7910 Page 1 7-64

METAL-CERAMIC TRIODE

7910

= DESCRIPTION AND RATING =

The 7910 is a triode of ceramic-and-metal planar construction primarily intended for use as a plate-pulsed oscillator or amplifier at frequencies up to 7500 megacycles.

GENERAL

ELECTRICAL

Cathode - Coated Unipotential

Heater Characteristics and Ratings	
Heater Voltage, AC or DC* 6.3±0.3	Volts
Heater Current‡ 0.275	Amperes
Cathode Heating Time, minimum 60	Seconds
Direct Interelectrode Capacitances	
Grid to Plate: (g to p) 1.0	pf
Input: g to $(h + k)$ 2.1	pf
Output: p to $(h + k)$ 0.02	pf
Heater to Cathode: (h to k) 1.15	pf

MECHANICAL

Operating Position - Any

See Outline Drawing on page 3 for dimensions and electrical connections.

MAXIMUM RATINGS

ABSOLUTE-MAXIMUM VALUES

PLATE-PULSED OSCILLATOR OR AMPLIFIER SERVICE

Peak Positive-Pulse Plate Suppl Duty Factor of Plate Pulse	v V	olt	ADA		1														12.730
Duty Factor of Plate Pulse # . Pulse Duration.	· ·		-9-			- 6					12				•		1.5	1200	Volts
Plate Current	2					1					•	•	•			•		2.0	Microseconds
Average#.	•		÷	÷										4		4		0.6	Milliamperes
Negative Grid Voltage		1		1				•	•						15			0.6	Amperes
Average During Plate Pulse. Grid Current			÷	÷.	4		÷		э.									. 50	Volts
Average#			1		1		25	1											Milliamperes
Plate Dissipation#	127	1.5	1.1			12			- 5		- 21		•					0.2	Amperes
Plate Dissipation# Peak Heater-Cathode Voltage																			Watts
Heater Positive with Respect	to	Ca	thod	le								*						. 50	Volts
																			Volts
Envelope Temperature at Hottest	Po	int	*	÷	•					÷								250	C

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Plate Voltage					а.										125	Volts
Cathode-Bias Resistor								•							35	Ohms
Amplification Factor						1.4			•					1.	6000	Micromhos
Transconductance					•	٠				. *	•	•	*	-		Milliamperes
Plate Current				•			•		1					•	11.5	minimperco

PLATE-PULSED OSCILLATOR SERVICE

Frequency		1	12.1										4		14				1.1				5900	Megacycles
Frequency						1									1.4					1.1			6.3	Volts
Heater Voltage			•									•						- 24	- 21			0	001	
Duty Factor .										1												0	1.0	Microseconds
Pulse Duration		1.0		1.2							1.1												1.0	
Pulse Repetitio	n B	ate	1.4																				1000	Pulses per Second
Peak Positive-P	uls	e P	lat	e S	upp	ly	Vo1	tag	e,											•			1000	Volts
The star December of the																								Milliamperes
Average											1												0.0	
Average Duri	ng	P1a	te	Pu1	se	14					1										•		600	Milliamperes
Crid Current																								Milliamperes
Average	1.2																	1.4					0.2	•
Average Duri	Ing	Pla	te	Pu1	se																•		200	Milliamperes
W C.I Derrow Or	+ ++ ++ +	14-																						
Average.															1.2	1.1							0.1	Watts
Average		-	. *						1										1.2	1.2			100	Watts
Average Duri	ing	118	tce	rul	se		1.0						•	•			1							

NOTES

* The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.

Heater current of a bogey tube at Ef = 6.3 volts.

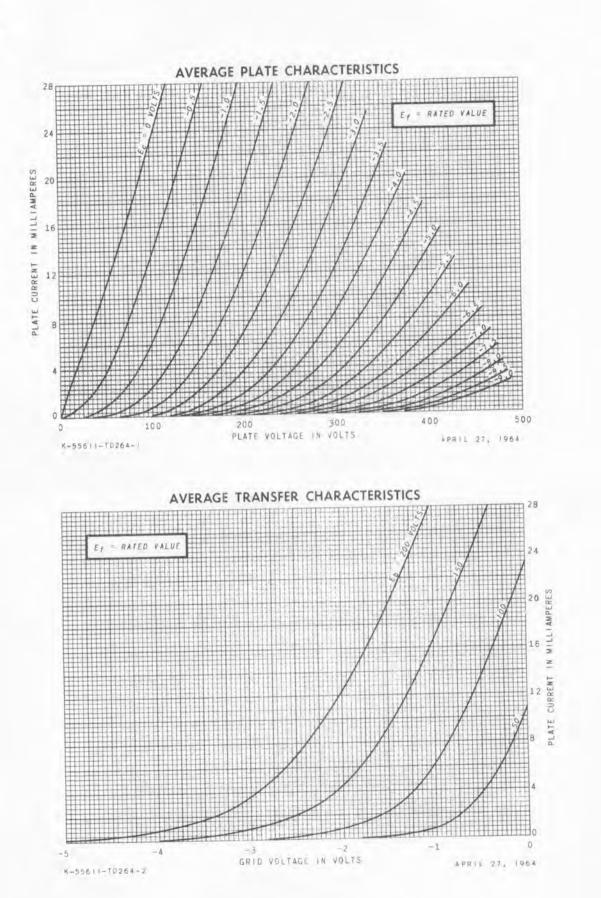
- § Measured with a grounded adapter that provides shielding between external terminals of tube.
- Applications with a duty factor greater than 0.001 should be referred to your General Electric tube sales representative for recommendations.

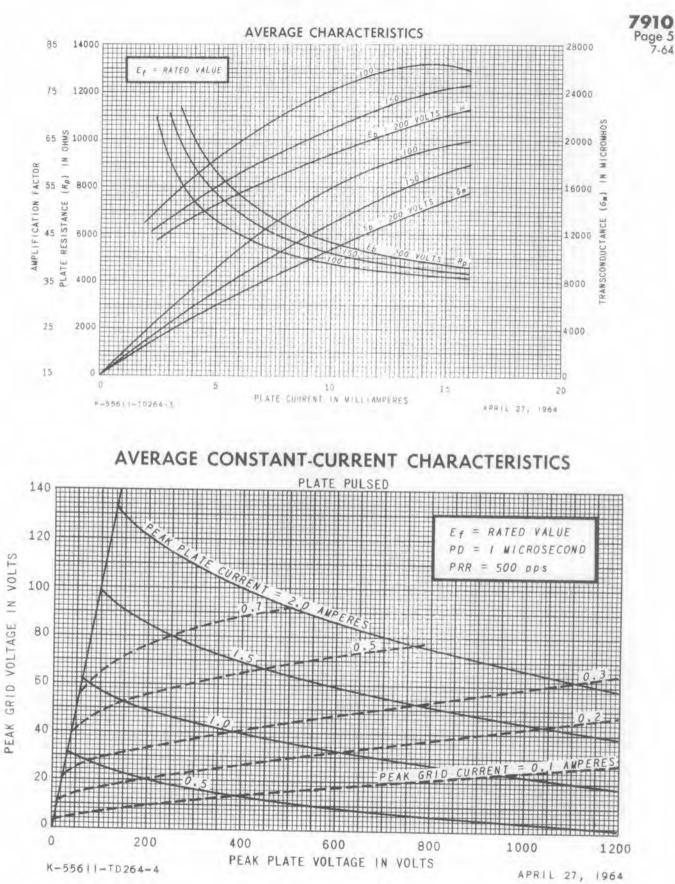
In any 5000 microsecond interval.

△ The regulation and/or series plate-supply impedance must be such as to limit the peak current, with the tube considered as short circuit, to a maximum of 6.0 amperes.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by ony purchaser of tubes or others.

I


PHYSICAL DIMENSIONS


7910 Page 3 7-64

Ref.	1	INCHES		M	ILLIMETER	S
Rer.	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum
A	0.357		0.363	9,068		9.220
В			0.285			7.24
C		0.180	1		4.57	1.24
D	0.108		0.112	2.743		2.845
E		0.040			1.02	2:045
F	0.025	1 - 1 - 1	0.031	0.635	2102	0.787
G	0.315		0.335	8.00		8.51
H	0.216		0.232	5.49		5.89
J	0.025		0.031	0,635		0.787
K	0.094	1	0.102	2.388		2.591
L	0.143	-	0.157	3.63		3.99
M	0.165		0.185	4.19		4.70
N			0.330			8.38
P	0.048		0.054	1.219		1.372
R	0.476		0.484	12.090		12.294
S	0.130		0.142	3.30		3.61

Note: The millimeter dimensions are derived from the original inch dimensions.

ELECTRONIC Courtesy of http://BlackRadios.terryo.org UNNOVATIO

Page 1 10-66

Planar Triode

7911

TUBES

FOR PLATE-PULSED OSCILLATOR **OR AMPLIFIER APPLICATIONS**

The 7911 is a high-mu triode of ceramic and metal planar construction intended for use as a plate-pulsed oscillator or amplifier at frequencies up to 6000 megacycles.

GENERAL

ELECTRICAL

Cathode - Coated Unipotential

IN ACTION

Operating Position - Any

See Outline Drawing on page 3 for dimensions and electrical connections.

MECHANICAL

Heater Characteristics a	nd	Ra	tin	gs			
Heater Voltage, AC or DC	*		1.	٠.	6.3	3±0.3	Volts
Heater Current‡		2	1.1	1.	1.5	0.55	Amperes
Direct Interelectrode Ca	pac	lit	anc	es	5		
Grid to Plate: (g to	p)				1	1.4	pf
input; g to $(h + k)$	1.1			1.2		5 0	nE
Output: $p to (h + k)$	+					0.05	pf

MAXIMUM RATINGS

PLATE-PULSED OSCILLATOR OR AMPLIFIER SERVICE-ABSOLUTE-MAXIMUM VALUES

Gathode Heating Time minimum																				a service production
Peak Positive-Pulse Plate Suppl						•		•	•										. 60	Seconds
																				Volts
Plate Current					1			2		•				•		. •		1.1	2.0	Microseconds
Average#	÷.	1	1.5	÷.	1											÷.			2 5	W/11/
Average During Plate Pulse∆								1.1	10	100		- 6	12			0			2.5	
Average During Plate Pulse∆ Negative Grid Voltage								1								•	*		2.5	Amperes
Average During Plate Pulse.	4						1.1	1.00												10.00
Average During Plate Pulse. Grid Current						1									•	•	1	1	100	Volts
Average#	1																		1 0	M4114
Average During Plate Pulse.	4.1					- 21						- 21		1	1				1.0	Milliamperes
Average During Plate Pulse. Cathode Current									•			^			•	•	•		1.0	Amperes
Average#				60			10.1	÷.		÷.				1.0					3.0	Mi 117
Average During Plate Pulse∆ Plate Dissipation#		2					1.2	1.1				10	1.1						2.0	Milliamperes
	1		1.2					1		•						10			3.0	Amperes
Plate Dissipation# Peak Heater-Cathode Voltage	1	1			1	1	•	•		*	1			5	1	*			6.5	Watts
Heater Positive with Respect	to	Ca	thod	of																
Heater Positive with Respect Heater Negative with Respect	ta	Ca	-had	1-															. 50	Volts
Heater Negative with Respect Envelope Temperature at Hottest	LO	ua	LUOC	ie			1.1											2	. 50	Volts
Envelope Temperature at Hottest	Poi	Int		•											Υ.				250	C

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

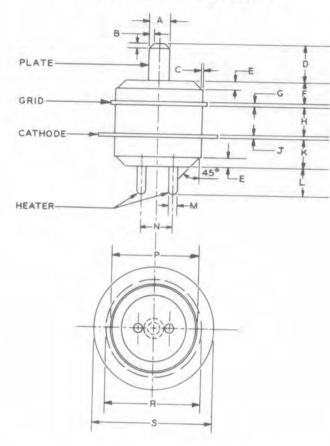
The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an

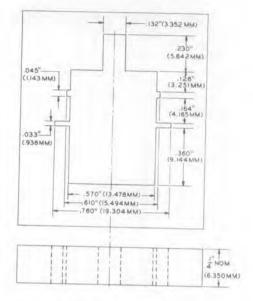
express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

CHARACTERISTICS AND TYPICAL OPERATION

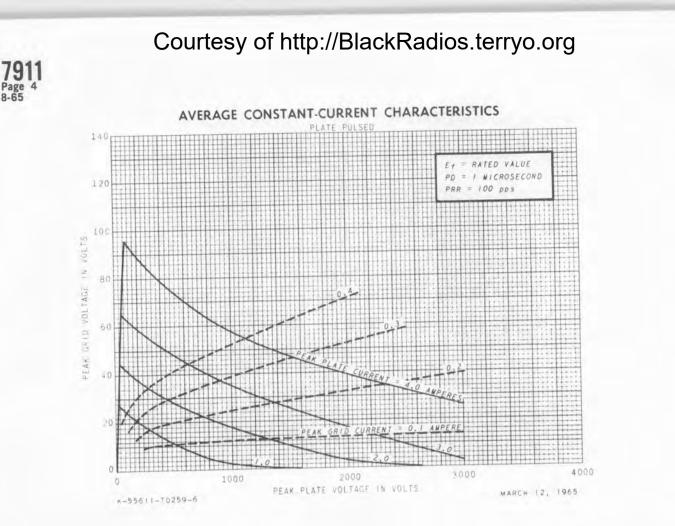
AVERAGE CHARACTERISTICS


Plate Voltage																			200	Volts
Cathode-Bias Resistor		•									2	1.							100	Ohms
Cathode-Bias Resistor	•	•	1		1			1	1					1					. 58	
Amplification Factor	•	*	•		1					1				1	-				2300	Ohms
Amplification Factor Plate Resistance, approximate.	•	•								1									25000	Micromhos
Transporter		1.0																		Milliamperes
Plate Current					•	•		•										6		
																				Volts
Ib = 100 Microamperes	*	•	1			•			•									-		Vecto.
PLATE-PULSED OSCILLATOR	2 5	ER	N	CE																51
						1.0	1.	1.	1										4100	Megacycles
																				Volts
Pulse Duration.		•							10	-	12	-							1.0	Microseconds
Pulse Duration		•										2		1.1					1000	Pulses per
Pulse Repetition Rate							•					-	-							Second
Peak Positive-Pulse Supply Volta	000																		3000	Volts
Plate Current Average											1.1	1.1						1.	2.5	Milliamperes
Average During Plate Pulse.				•			-					1	1						2.5	Amperes
Average During Plate Pulse.																				
Grid Current																			0.3	Milliamperes
Average				•	1.4				1							1.2			0.3	Amperes
Average During Plate Pulse.					12										1		-			
Useful Power Output																			2.2	Watts
Useful Power Output Average			•	•	1	•										1	10	1	2.2	Kilowatts
Average						•	•			•		1.0						1		

NOTES


- * The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- # Heater current of a bogey tube at Ef = 6.3 volts.
- § Measured using a grounded adapter that provides shielding between external terminals of tube.
- Applications with a duty factor greater than 0.001 should be referred to your General Electric tube sales representative for recommendation.
- # In any 5000 microsecond interval.
- △ The regulation and/or series plate-supply impedance must be such as to limit the peak current, with the tube considered a short circuit, to a maximum of 25 amperes.

PHYSICAL DIMENSIONS


ALIGNMENT GAUGE

Note: Gauge tolerances are ±0.001 inches or ±0.025 millimeters, unless otherwise indicated.

Ref.		INCHES		M	ILLIMETERS	
ner.	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum
А	0.122		0.128	3.099		3.251
В	And a second	0.030		51077	0.76	5.251
C	1	0.005			0.13	
D	0.220		0.230	5.59	0.15	5.84
E	0.040		0.060	1.02	1	
F	0,120		0.130	3.05		1.52
G	0.025		0.031	0.635		3.30
H	0.167		0.177	4.24		0.787
J	0.025		0.031	0.635		4.50
K	0.170		0.180	4.32		0.787
L	0.170		0.180			4.57
M	0.047		0.053	4.32		4.57
N	0.185			1.194		1.346
P	0.535		0.215	4.70		5.46
R			0.565	13.59		14.35
	0.598		0.608	15.19		15.44
S	0.748		0.758	19.00		19.25

Note: The millimeter dimensions are derived from the original inch dimensions.

TUBE DEPARTMENT

Owensboro, Kentucky

age 1 7-64

7913

METAL-CERAMIC TRIODE

DESCRIPTION AND RATING =

The 7913 is a high-mu triode of ceramic-and-metal planar construction primarily intended for use as an oscillator or radio-frequency power amplifier.

GENERAL

ELECTRICAL

Cathode - Coated Unipotential

Heater Characteristics and Rati	lngs		
Heater Voltage, AC or DC*		6.3±0.3	Volts
Heater Current‡ .		0.4	Amperes
Direct Interelectrode Capacitan	ices		
Grid to Plate: (g to p) .		24	nf
Input: g to $(h + k)$.	0.1	6.0	pf
Output: $p to (h + k)$.	1	0.03	pf
Heater to Cathode: (h to k)	• •	. 0.05	pr
(I CO K)		. 2.4	br

MECHANICAL

Operating Position - Any

See Outline Drawing on page 3 for dimensions and electrical connections.

MAXIMUM RATINGS

ABSOLUTE-MAXIMUM VALUES

Plate Voltage		÷.,	5	1.1																			
Plate Voltage Plate Dissipation .			г.	10		1.					•							 1.	1.0		1	330	Volts
Plate Dissipation . DC Grid Current .			1								+							2.			 	5.5	Watts
DC Grid Current DC Cathode Current .					1		•	•	•		1				1.5							10	Milliamperes
DC Cathode Current . Peak Cathode Current			•				•		•		1	19		1			÷	 1.1				30	Milliamperes
Heater-Cathode Voltas	ze															1.2	•				 1.4	120	Milliamperes
Heater Positive with	1th	R	est	Dec		0 0	ath	obo															
Heater Negative wi	ith	R	AST	Dec		00	ath	ode	1					*		•				- 6		50	Volts
Grid-Circuit Resistar	nce	1.1								•			•						1	1		50	Volts
With Fixed Bias .																							
With Cathode Bias			£.,	0	÷.,							•		•	٠	•					0.	025	Megohms
With Cathode Bias Envelope Temperature	at	H	ott	eet	- P	oin		÷.				•	•									0.1	Megohms
Envelope Temperature		-			-	orn		•			*		*	•	•		۰.			÷		250	C

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The tubes and arrangements disclosed herein may be cavered by patents of General Electric Campany or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Campany conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an

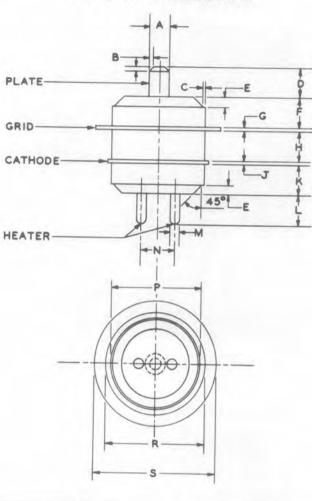
express written agreement to the controry, General Electric Company assumes no Jiability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

7913 Page 2 7-64

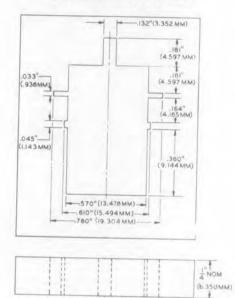
CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

							0.1	 								. 200	Volts
Plate Voltage	• •		•						1							. 47	Ohms
Cathode-Bias Resistor .														÷.		100	
							 					-					Ohms
																	Micromhos
					 	 	 						-	-			
Plate Current	• •			•			1				10		-				Milliamperes
Grid Voltage, approximate Ib = 100 Microamperes																-4.5	Volts
UHF OSCILLATOR SER	VICE																
Frequency					 		 	 14								. 400	Megacycles
																	Volts
Plate voltage		•						1.5				1.1				1500	Ohms
Grid Resistor			•	•		•			10	-						. 25	Milliamperes
plate Compant	100 miles					 			•					-	-		Milliamperes
and 1 amment approvimate															-		Watts
Power Output, approximate																	na c co


NOTES

* The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.

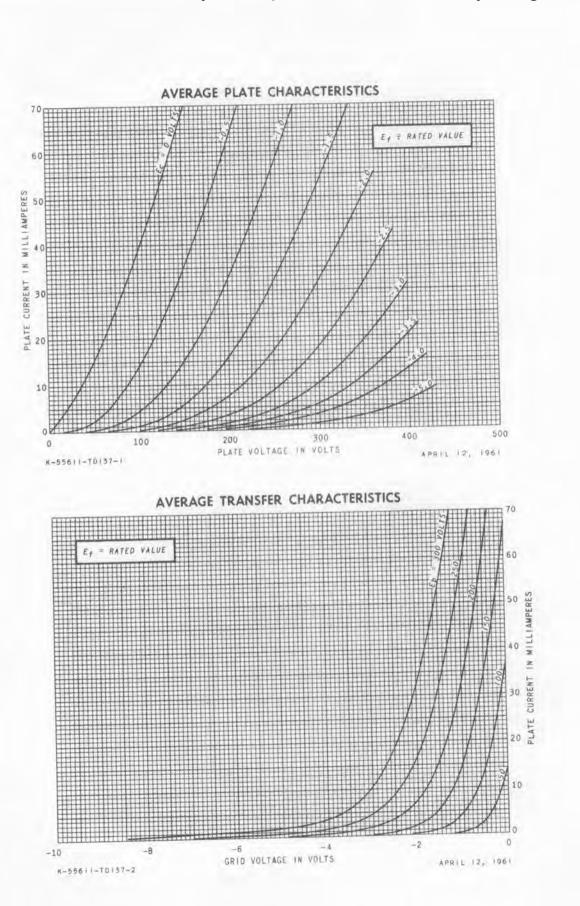

§ Without external shield.

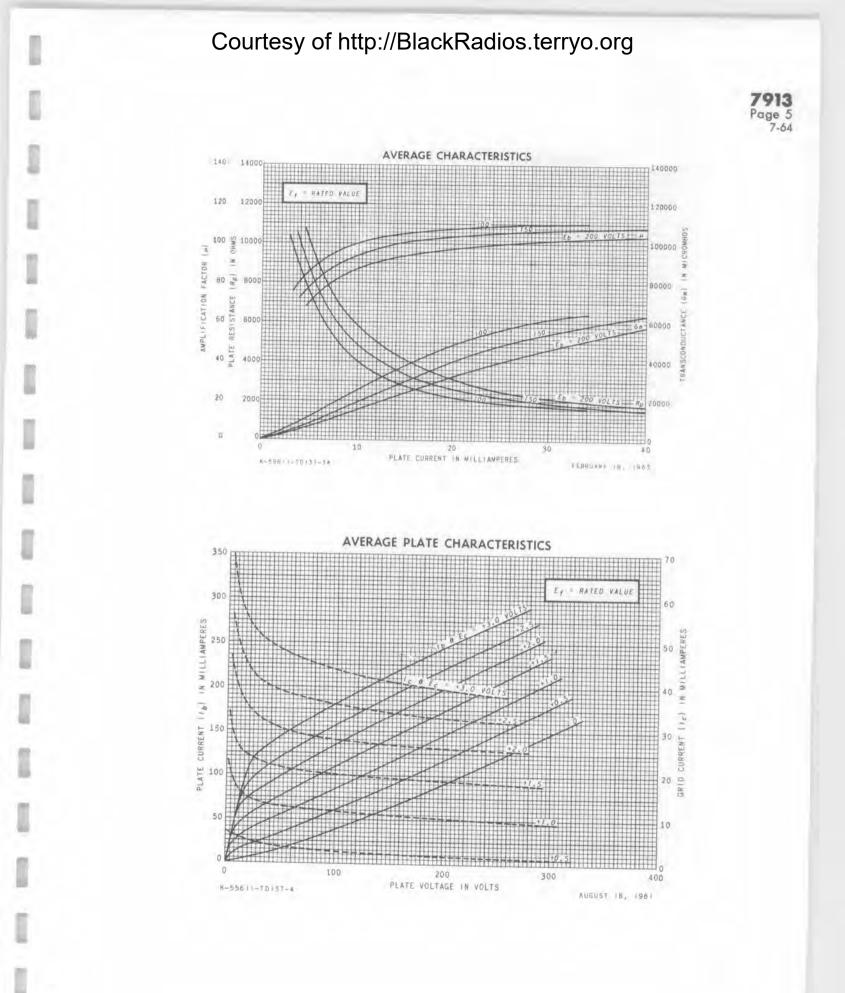
[#] Heater current of a bogey tube at Ef = 6.3 volts.

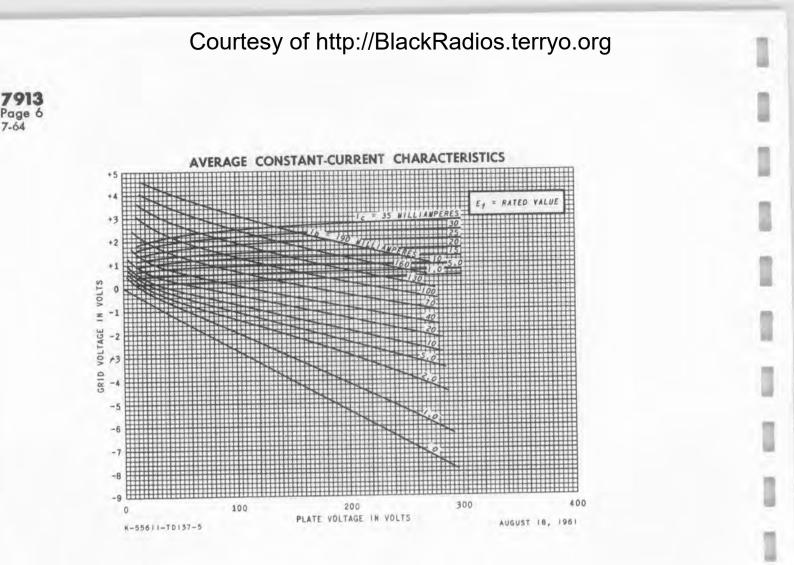
PHYSICAL DIMENSIONS

ALIGNMENT GAUGE

Note: Tolerances are ±0.001 inches or ±0.025 millimeters, unless otherwise indicated.


Ref.		INCHES		M	ILLIMETERS	
	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum
A	0.122		0.128	3.099		3.251
В	1	0.030			0.76	5.251
C		0.005			0.13	
D	0.170		0.180	4.32	0.15	4.57
E	0.040		0.060	1.02		1.52
F	0.165		0.175	4.19		
G	0.025		0.031	0.635		4.45
Н	0.167		0.177	4.24		0.787
J	0.025		0.031	0.635		4.50
K	0.170	-	0.180	4.32		0.787
L	0.170		0.180	4.32		4.57
M	0.047		0.053			4.57
N	0,185			1.194		1.346
P	0.535		0.215	4.70		5.46
R	0.598		0.565	13.59		14.35
			0.608	15.19		15.44
S	0.748		0.758	19.00		19.25


Note: The millimeter dimensions are derived from the original inch dimensions.


7913 Page 3 7-64

۲

TUBE DEPARTMENT

Owensboro, Kentucky

GL-7985 ET-T1657A Page 1 2-65

VHF-UHF

RING-SEAL CONSTRUCTION GROUNDED-GRID CIRCUIT

The GL-7985 is a four-electrode transmitting tube featuring a metal-andceramic envelope for use as a power amplifier or oscillator in grounded-grid circuits with both grids maintained at radio-frequency ground potential. The output circuit is connected between the anode and the screen grid. The anode is capable of dissipating $3 \frac{1}{2}$ kilowatts. Cooling is accomplished by water and forced air with the water jacket an integral part of the anode. The cathode is a unipotential thoriated-tungsten cylinder, heated by electron bombardment. Maxi-

> Type of Cooling-Water Flow

WATER COOLED METAL AND CERAMIC INTEGRAL WATER JACKET

mum ratings apply up to 800 megaycles, although higher frequency operation is possible.

In narrow band, Class C, groundedgrid, amplitude-modulated service, the GL-7985 has a useful carrier-power output in excess of one kilowatt. In Class C Telegraphy, it has a useful power output of 3.0 kilowatts of continuous power as an amplifier or oscillator.

As a Class B radio-frequency power amplifier, the tube is capable of delivering 1100 watts of power with 20 watts of drive at carrier level.

	Minimum	Bogey	Maxim	um
Cathode				
Heater Voltage		6.7	7.0	Volts
Heater Current at 7.0 Vol Without Cathode Bom-	ts			. oreg
barding. With 150 Watts Cathoo	de	14.5	-	Amperes
Bombarding		13.5	-	Amperes
Heater Starting Current	-	_	25	Amperes
Heater Cold Resistance Cathode Bombarding		0.041	-	Ohms
Power*.		170	195	Watts
Cathode Bombarding Volta For 170 Watts Bombard	1-			
ing Power For 195 Watts Bombard	- E	650	~	Volts
ing Power	1.00	700		Volts
Cathode Heating Time	1		-	Minutes
$\begin{array}{l} \text{Amplification Factor, } G_2 \text{ to} \\ G_1, E_b \!=\! 4000 \text{ volts, } I_b \!=\! 0.5 \end{array}$				
Ampere	-	20		
Peak Cathode Current‡	. —		6	Amperes
Direct Interelectrode Capacit	ances			
Cathode to Plate§		0.01	-	μμf
Input, G2 tied to G1	-	27.8		MAL
Output, G2 tied to G1 .	-	6.4	-	μµf

Mechanical

Mounting Position—Vertical, Anode-end Up Net Weight, approximate 2.0 Pounds

GL-7985

TETRODE

	Th	ermal	6	
Water	and	Forced	Air	

Anode	3.0	Min	Gallons per Minute	
Pressure Drop at Rated Flow Water Pressure Outlet Water Temperature	20	Max Max	Pounds per Square	Inch
Air Flow Screen-grid to Control-gr				

c Feet per Minute c Feet per Minute

Water and forced-air cooling to be applied before and during the application of any voltages. Water cooling may be discontinued with removal of all voltages. Air flow on heater-to-cathode seals must be maintained for one minute after removal of heater voltage.

GL-7985 ET-T1657A Page 2 2-65

RADIO-FREQUENCY POWER AMPLIFIER-CLASS B

Carrier Conditions per Tube for use with a Maximum Modulation Factor of 1.0

Maximum Ratings, Absolute Values DC Plate Voltage	Volts Volts	DC Plate Current 0.475 Zero Signal DC Plate Current 0.115 $E_b = 7000$ volts, $E_{c2} = 600$ volts,	Ampere Ampere
DC Plate Current	Watts	E _{cl} adjusted for I _b =0.115 amperes DC Grid-No. 2 Current 0.010 DC Grid-No. 1 Current 0.025 Driving Power, approximate 80	Ampere Ampere Watts
Plate Dissipation 3.5 Typical Operation Grounded-grid Circuit, 225-400 Megacycles DC Plate Voltage. 7000 DC Grid-No. 2 Voltage. 600	Kilowatts Volts Volts	Measured at crest of audio-frequency cycle with modulation factor of 1.0 Power Output#	Watts Percent Watts
DC Grid-No. 1 Voltage, approximate35 Peak RF Plate Voltage, approximate35 Solo Peak RF Grid-No. 1 Voltage, approxi-	Volts	Plate Dissipation 2300 Cathode Bombarding Power* 160 Cathode Bombarding Voltage 610 Cathode Bombarding Current 0.260	Watts Volts

PLATE MODULATED RADIO-FREQUENCY AMPLIFIER-CLASS C TELEPHONY

Carrier Conditions With a Maximum Modulation Factor of 1.0, Screen Modulation Required

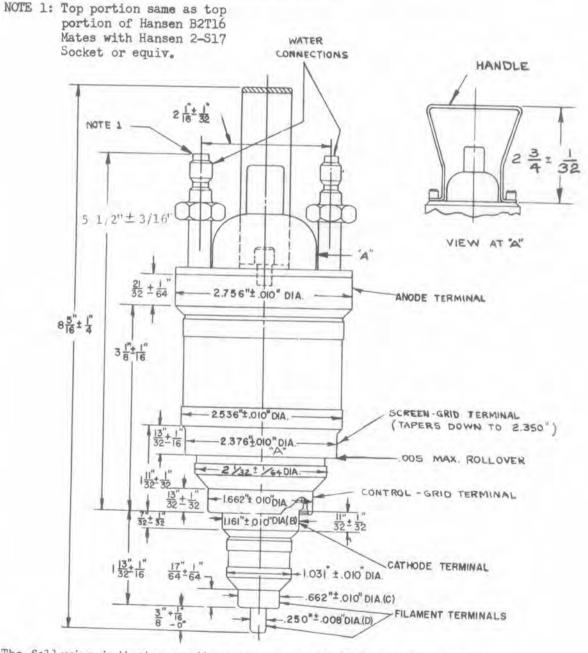
Maximum Ratings, Absolute ValuesDC Plate Voltage4500DC Grid-No. 2 Voltage500DC Grid-No. 1 Voltage-120DC Plate Current0.80DC Grid-No. 1 Current0.120Plate Input3.60Grid-No. 2 Input25Plate Dissipation3.5	Ampere Ampere Kilowatts Watts	Cathode Bombarding Power* 165	Volts Volts Ampere Ampere Watts Watts Percent Watts	
Typical Operation Grounded-grid Circuit at 400 Megacycles DC Plate Voltage 4000	Volts	Cathode Bombarding Voltage, approx. 630 Cathode Bombarding Current, approx. 0.260	Volts Ampere	

RADIO-FREQUENCY AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY

Key Down Conditions per Tube Without Amplitude Modulation

Maximum Ratings, Absolute Values DC Plate Voltage DC Grid-No. 2 Voltage DC Plate Current Plate Input Grid-No. 2 Input.	7000 Volts 750 Volts 1.0 Ampe 6.0 Kilov 40 Watt	Plate Dissipation 120 DC Grid-No. 1 Voltage 0.150 eres watts	Kilowatts Volts Ampere
Typical Operation Grounded-grid Circuit at 400 Megacycles DC Plate Voltage. 4500 DC Grid-No. 2 Voltage. 600 DC Grid-No. 1 Voltage. -120 Peak RF Plate Voltage, approximate 3000 Peak RF Grid-No. 1 Voltage Peak RF Grid-No. 1 Voltage 140 DC Flate Current 0.6 DC Grid-No. 2 Current 0.018 DC Grid-No. 1 Current 0.080 Driving Power, approximate 100 Power Output, approximate# 1800 Output Circuit Efficiency 90 Cathode Bombarding Power* 160 Cathode Bombarding Voltage, approximate approximate 0.02	700 Vc -100 Vc -100 Vc 140 Vc 0.8 Ar 0.100 Ar 100 W 3200 W 90 Pc 165 W 630 Vc	Grounded-grid Circuit at 800 Megacycles DC Plate Voltage. 4500 DC Grid-No. 2 Voltage. 600 olts DC Grid-No. 1 Voltage. -120 olts Peak RF Plate Voltage, approximate. 3000 peak RF Grid-No. 1 Voltage 140 mpere DC Grid-No. 2 Current 0.018 mpere DC Grid-No. 2 Current 0.018 mpere DC Grid-No. 1 Current 0.080 Vatts Driving Power, approximate# 1250 Vatts Output Circuit Efficiency 83 Vatts Cathode Bombarding Power* 150 cathode Bombarding Voltage, approximate 600 Cathode Bombarding Current, approximate 0.250	Volts Volts Volts Volts Volts Ampere Ampere Matts Watts Vatts Volts Ampere

GL-7985 ET-T1657A Page 3 2-65


The cathode of the GL-7985, because of transit-time effects which raise the temperature of the cathode, is subjected to considerable back bombardment in ultra-high-frequency service. The amount of heating due to bombardment is a function of the operating conditions and frequency, and must be compensated for by a reduction of the cathode power input to prevent overheating of the cathode with resulting short life. In any case it is important from a tube life standpoint to keep the cathode power at as low a level as possible consistent with required performance. Bombarder power should be monitored by a suitable wattmeter or DC voltmeter and milliammeter arrangement. For long life, the tube should be put in operation with about 180 watts bombarding power. After the circuit has been adjusted for proper tube operation, bombarding voltage should be reduced to a value slightly above that at which circuit performance is affected. Minor circuit readjustment may be necessary after the above adjustment. The procedure for determining proper bombarding power should be repeated periodically.

‡ Represents maximum usable cathode current (plate current plus current to each grid) for any condition of operation.

§ Measured with complete isolation between cathode and plate.

¶ Output capacitance measured between anode and screen grid. Control grid connected directly to screen grid.

* # Useful power output including power transferred from driver stage.

The following indicator readings are measured with respect to a centerline determined by the centers of the anode terminal and control grid terminal.

Total Indicator Readings -Diameter A = 0.024 inches Diameter B = 0.024 " Diameter C = 0.030 " Diameter D = 0.050 "

GL-8500 ET-T1713 Page 1

RADIO-FREQUENCY AMPLIFIER CW SERVICE GROUNDED-GRID OPERATION

GL-8500

TETRODE

The GL-8500 is a reliable power tetrode that delivers useful output to 1250 megacycles or higher. This tube is particularly suitable for application in the final output or driver stage of military-communications systems.

As a Class B linear amplifier in the 225-400-megacycle range, the tube will deliver 110 watts of carrier power modulated up to 100 percent. Since a power gain of 20 may be realized, drive requirements are low—approximately 5 watts at carrier level.

FORCED-AIR COOLED METAL AND CERAMIC INTEGRAL RADIATOR

Operating as a Class C CW amplifier at 900 megacycles, the gain is approximately 15 at the 200-watt level.

Features of the GL-8500 include long life and reliability, high gain, high linearity, and resistance to shock and vibration.

These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where performance and reliability are important.

Electrical

	Minimum	Bogey	Maximum	
Heater Voltage*	_	6.3	6.8	Volts
Heater Current.		3.8		Amperes
Cathode Heating Time Amplification Factor, G_2 to G_1 , $E_b=1000V$ DC; $E_s2=275V$ DC:	1		-	Minutes
$I_{b} = 0.2$ A DC	-	14	-	
Peak Cathode Current† Direct Interelectrode Capacitances	-	-	1.75	Amperes
Cathode to Plate	-	0.006	_	μµf
Input, G ₂ tied to G ₁ .		19.5		μµf
Output, G2 tied to G1	-	6.4		μµf

Mechanical

Mounting Position—Any Net Weight, approximate.....

1.0 Pounds

Cooling—Forced Air§ Through Radiator, at Sea Level**					
Plate Dissipation Air Flow, 45 C In- coming Air Tem- perature, mini-	500	400	300	Watts	
mum	17.0	12.0	6.5	Cubic Feet per Minute	
proximate	0.9	0.5	0.2	Inches-	
Radiator Hub Tem- perature, at Point Adjacent to Anode Seal	-		250	Water	
Seals Screen-Grid to Con- trol-Grid, approxi-					
mate	-	-	1	Cubic Feet per Minute	
Heater to Cathode,				Per statistic	
approximate	-	-	1	Cubic Feet per Minute	
Ceramic Temperature at Any Point, maxi-				ber minute	
mum	\rightarrow	_	200	С	

Thermal

GL-8500 ET-T1713 Page 2 3-64

RADIO-FREQUENCY POWER AMPLIFIER-CLASS B LINEAR

Corrier conditions per tube for use with a maximum modulation factor of 1.0

Typical Operation Maximum Ratings Grounded-Grid Circuit at 225-400 Megacycles DC Plate Voltage DC Grid-No. 2 Voltage 2000 Volts DC Plate Voltage. DC Grid-No. 2 Voltage DC Grid-No. 1 Voltage, approximate. Peak RF Plate Voltage #, approximate. Peak RF Grid-No. 1 Voltage #, approximate 1750 Volts 320 Volts Volts 250 Amperes 0.250 DC Plate Current..... Volts -20 Watts 500 Plate Input Volts 1250 Watts 5 Grid-No. 2 Input 40 Volts 500 Watts Plate Dissipation 0.200 Amperes DC Plate Current. Zero Signal DC Plate Current (Eel adjusted) 0.020 Amperes DC Grid-No. 2 Current 0.005 Amperes DC Grid-No. 1 Current. 0.010 Amperes Driving Power, approximate. 5 Watts 110 Watts

RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY

Key-down conditions per tube without amplitude modulation \triangle

Maximum Ratings DC Plate Voltage DC Grid-No. 2 Voltage	320	320	Volts Volts	Typical Operation Grounded-Grid Circuit at 900 Megacy DC Plate Voltage. DC Grid-No. 2 Voltage.	vcles 1500 210 -40	2000 225 -40	Volts Volts Volts
DC Grid-No. 1 Voltage DC Plate Current	0.300	-100 0.300	Volts Ampere	DC Grid-No. 1 Voltage DC Plate Current DC Grid-No. 2 Current,		0.250	Ampere
DC Grid-No. 1 Current. Plate Input	480	0.050 600 15	Ampere Watts Watts	approximate DC Grid-No. 1 Current,	0.010	0,010	Ampere
Grid-No. 2 Input Plate Dissipation Grid-No. 1 Dissipation		500	Watts Watts	approximate Driving Power, approximate Power Output, approximate¶	14	$ \begin{array}{r} 0.020 \\ 15 \\ 300 \end{array} $	Ampere Watts Watts

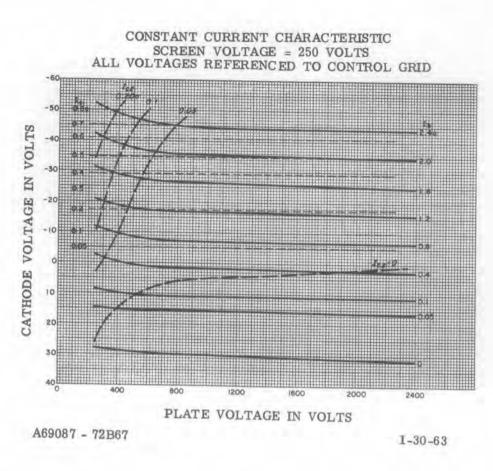
* Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater-voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.

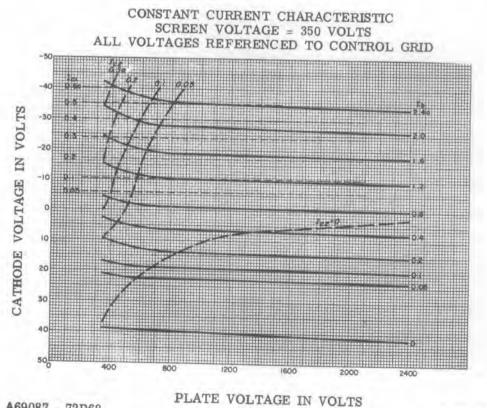
Represents maximum usable cathode current (plate current plus current to each grid) for any condition of operation.

Measured with a 6-inch minimum diameter flat metal disk attached to the screen-grid ring. Control grid connected to the screen

grid. Output capacitances measured between anode and screen grid. Control grid connected directly to screen grid.

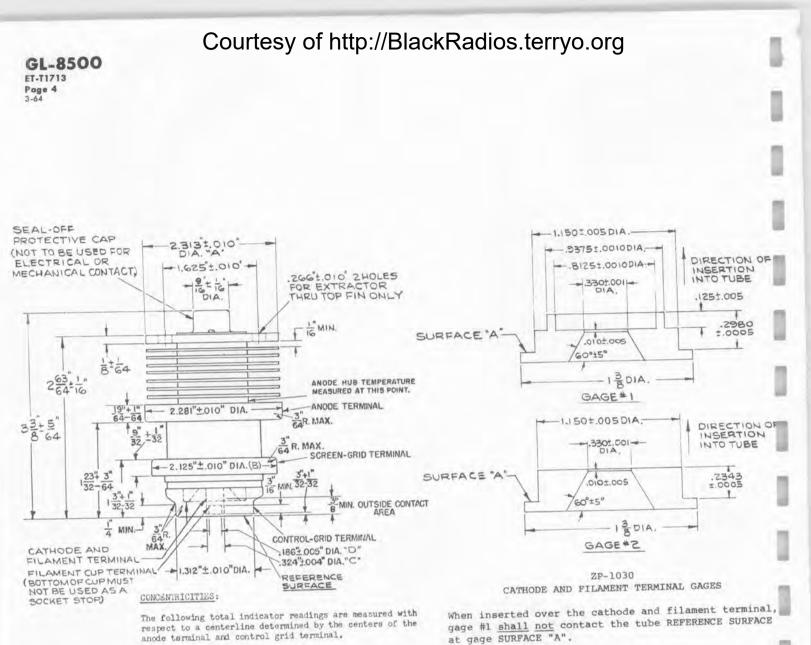
Forced-air cooling to be applied before and during the application of any voltages.


Provision must be made for unobstructed passage of cooling air between radiator fins and between the anode terminal and adjacent radiator fin.


Useful power output as measured in output-circuit load.

Useful power output including power transferred from driver stage. Output circuit efficiency approximately 80 percent.

△Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 percent of the carrier conditions.


GL-8500 FT-T1713 Page 3 3-64

A69087 - 72B68

1 - 30 - 63

anode terminal and control grid terminal. Diameter A = 0.030 inches Diameter B = 0.016 inches Diameter C = 0.036 inches

Diameter D = 0.042 inches

Total indicator reading of filament cup terminal diameter (D) measured with respect to center of cathode and filament terminal diameter (C) - 0.016 inches.

A-69087 -72B58

12-31-62

When inserted over the cathode and filament terminal,

gage #2 shall contact the tube REFERENCE SURFACE

at gage SURFACE "A".

GL-8513 ET-T1716 Page 1 2-65

GL-8513

TETRODE

VHF-UHF RING-SEAL CONSTRUCTION

GROUNDED-GRID CIRCUIT

FORCED-AIR COOLED METAL AND CERAMIC

The GL-8513 is a four-electrode transmitting tube featuring a metal-and-ceramic envelope for use as a power amplifier or oscillator in grounded-grid circuits with both grids maintained at radio-frequency ground potential. The output circuit is connected between the anode and the screen grid. The anode is capable of dissipating 4 kilowatts. Cooling is accomplished by forced air with the radiator an integral part of the anode. The cathode is a unipotential thoriated-tungsten cylinder, heated by electron bombardment. Maximum ratings apply up to 800 megacycles, although higher frequency operation is

As a Class B linear power amplifier the tube will deliver 1500 watts at carrier level.

In narrow band, Class C, grounded-grid, amplitude-modulated service, the GL-8513 has a useful carrier-power output in excess of one kilowatt. In Class C Telegraphy, it has a useful power output of 3 kilowatts of continuous power as an amplifier or oscillator.

Thesesl	1				al	Electric
Thermal Forced Air gh Radiator, at Sea Level	Type of Cooling Air Flow Throug		Maxi	Bogey	Mini- mum	Cathode
tion Air Flow Static Pressure 135 CFM 2.8 In.	Plate Dissipati 4.0 Kw	Volts	7.0	6.7	-	Heater Voltage Heater Current at 7.0 Volts
Control-grid	res Seals Screen-grid to	Amperes	-	14.5		Without Cathode Bombarding With 150 Watts Cathode
15 Cubic Frate - Mr.	es minimum	Amperes		13.5		Bombarding Heater Starting C
10de, minimum 75 Cubic Foot and Minimum	co arcatel-to-catil	Amperes	25			Heater Starting Current.
c, minimum. 10 Cubic Feet per Minute	* Allout Ctalling					Cathode Bombarding Power*
mperature.	Incoming Air Ter	Watts	195	170	2	Cathode Bombarding Voltage DC
Derature maximum 250 C	Anode Hub Temp	\$7.34		650		Power.
Anode Commission 1	Temperature of A	Volts		0.50		For 195 Watts Bombarding
m 250 C	Seals, maximur	Volts		700	-	Power
Any Other Point.	Temperature at A	Minute	-		1	Amplification Factor, G _* to G ₁ :
				20	-	$E_b = 4000$ volts: $L = 0.5$ ampere
ages. Air now on heater to eathed	cion of diry volta	Amperes	б	-		Peak Cathode Current† Direct Interelectrode Capacitances
one minute after removal of brother with	be manualica for	uuf	-	0.01		Cathode to Plates
ducting can be constructed so that it is	and radiator all d	μµf		27.8		Output C tied to G
seal and ceramic through the and	along the anode	μµf		6.7	100.1	Sucput, G2 fied to G1
de ceramic and anode and maline mi	complish the anod				cal	Mechanic
n of cooling air will vary with confirmate	only. Distribution	Pounds	12.5	Up	h and	Mounting Position-Vertical Anode
node, minimum 7.5 Cubic Feet per Mi ic, minimum 10 Cubic Feet per Mi emperature, 55 C perature, maximum 250 C Anode Ceramic and 250 C Any Other Point, 200 C g to be applied before and during the app ages. Air flow on heater-to-cathode seals mor one minute after removal of heater volt ducting can be constructed so that air is for seal and ceramic through the anode con tional holes in the plate contact ring to de ceramic and anode seal cooling. The volt dicated for the various seals is approxim of cooling air will vary with eace	 Anode Ceramic Anode Ceramic Incoming Air Ter- maximum Anode Hub Temp Temperature of A Seals, maximum Temperature at A maximum Forced-air cooling tion of any volta be maintained for The radiator air d along the anode fingers and addit complish the anode of cooling air ind 	Ohms Watts Volts Volts Minute Amperes μμf μμf μμf	195 	20 0.01 27.8 6.7	C I cal	Heater Cold Resistance Cathode Bombarding Power [#] Cathode Bombarding Voltage, DC For 170 Watts Bombarding Power. For 195 Watts Bombarding Power. Cathode Heating Time Amplification Factor, G ₂ to G ₁ ; E _b = 4000 volts; I _b = 0.5 ampere Peak Cathode Current [†] Direct Interelectrode Capacitances Cathode to Plate§ Input, G ₂ tied to G ₁ Output, G ₂ tied to G ₁ Mechanic

RADIO-FREQUENCY POWER AMPLIFIER-CLASS B

Carrier Conditions per Tube for Use with a Maximum Modulation Factor of 1.0

Maximum Ratings, Absolute ValuesDC Plate Voltage9000DC Grid-No. 2 Voltage800DC Plate Current0.800Plate Input6.0Grid-No. 2 Input25Plate Dissipation4.0	Ampere	DC Flate Current 0.600 DC Grid-No. 2 Current 0.010 DC Grid-No. 1 Current 0.060 Driving Power, approximate 160 Measured at crest of audio-frequency cycle with modulation factor of 1.0	Ampere Ampere
Typical Operation		Power Output# 1500 Circuit Efficiency 90	Watts
Grounded-grid Circuit, 225–400 Megacycles DC Plate Voltage 8000 DC Grid-No. 2 Voltage 750	Volts Volts	Cathode Bombarding Power* 170 Cathode Bombarding Voltage. 650	Percent Watts Watts Volts Ampere

GL-8513 ET-T1716 Page 2 2-65

PLATE MODULATED RADIO-FREQUENCY AMPLIFIER-CLASS C TELEPHONY

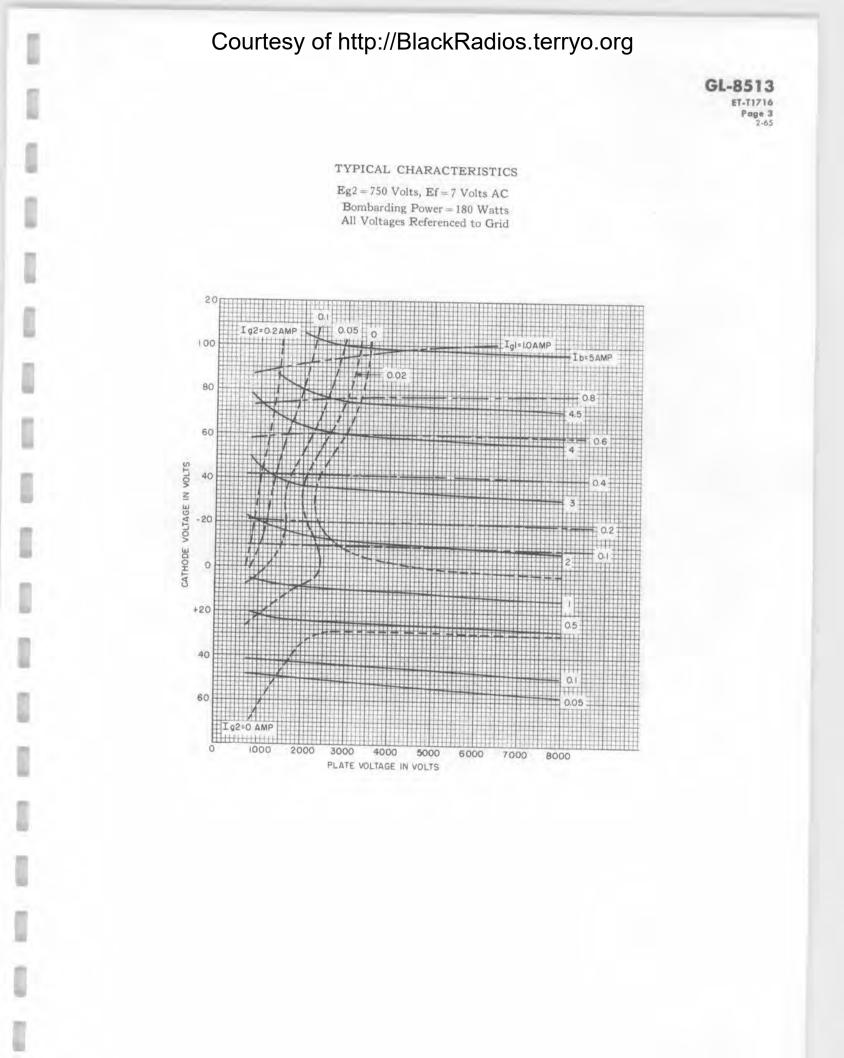
Carrier Conditions with a Maximum Modulation Factor of 1.0, Screen Modulation Required

DC Grid-No. 2 Voltage 500 DC Grid-No. 2 Voltage -120 DC Plate Current 0.80 DC Grid-No. 1 Current 0.120 Plate Input 3.60 Grid-No. 2 Input 25	Volts Volts Volts Ampere Ampere Kilowatts Watts Kilowatts	DC Grid-No. 1 Current, approximate 0.100 Driving Power, approximate 100 Power Output# 1250 Output Circuit Efficiency 90 Cathode Bombarding Power* 165	Volts Volts Volts Ampere Ampere Watts Watts Percent Watts
Typical Operation		Cathode Bombarding Voltage, approximate 630 Cathode Bombarding Current,	Volts
Grounded-grid Circuit at 400 Megacycles DC Plate Voltage 4000	Volts	approximate	Ampere

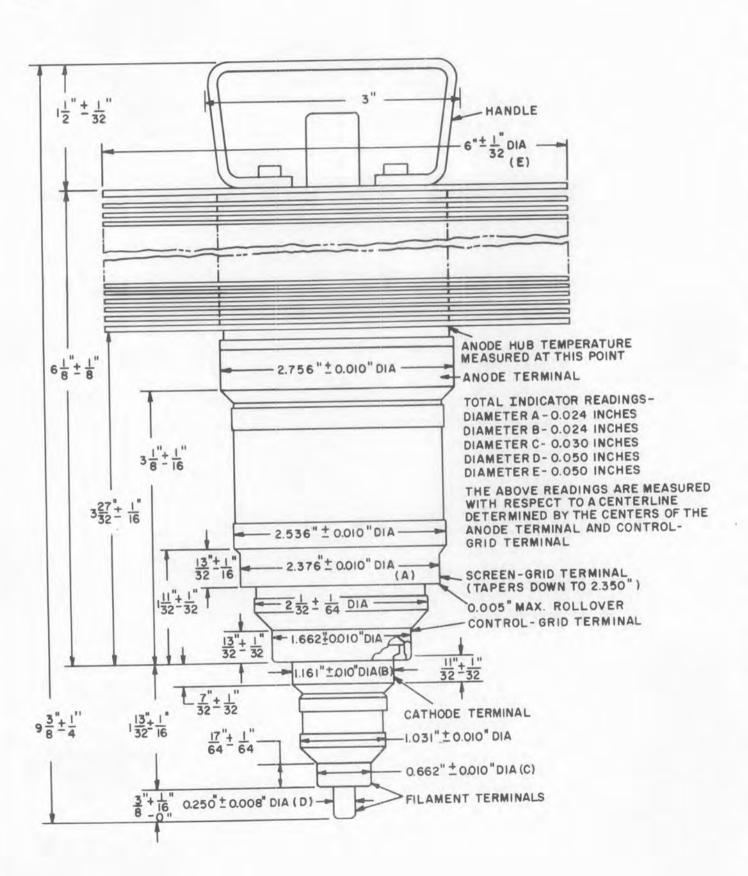
RADIO-FREQUENCY AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY

Key Down Conditions per Tube Without Amplitude Modulation

Maximum Ratings, Absolute Values			Power Output, approximate# 1800 3200 Output Circuit Efficiency 90 90	Watts Percent
DC Plate Voltage 700 DC Grid-No. 2 Voltage 75	50	Volts Volts	Cathode Bombarding Power*. 160 165 Cathode Bombarding Voltage,	Watts
DC Plate Current 1 Plate Input 6	.0	Amperes Kilowatts	approximate 610 630 Cathode Bombarding Current,	Volts
Grid-No. 2 Input Plate Dissipation 4	40	Watts Kilowatts		Ampere
DC Grid-No. 1 Voltage	20	Volts	Grounded-grid Circuit at 800 Megacycles	
DC Grid-No. 1 Current 0.13	50	Ampere	DC Plate Voltage	Volts
De dilarito. i current		Sector Sector	DC Grid-No. 2 Voltage 600	Volts
Typical Operation			DC Grid-No. 1 Voltage	Volts
Grounded-grid Circuit at 400 Megacycles			Peak RF Plate Voltage, approximate 3000	Volts
Grounded-grid Circuit at 400 Megacycles	500	Volts	Peak RF Grid-No. 1 Voltage. 140	Volts
DC I late voltage	700	Volts	DC Plate Current 0.6	Ampere
DC GIIG-IG, 2 Voltage	100	Volts	DC Grid-No. 2 Current 0.018	Ampere
De dild-ito. i voltage	100	VOILS	DC Grid-No. 1 Current 0.080	Ampere
Peak RF Plate Voltage,		17-14-	DC Grid-Ivo. 1 Current 0.000	Watts
approximate		Volts	Driving Power, approximate 90	Watts
Peak RF Grid-No. 1 Voltage 140	140	Volts	Power Output, approximate#	Percent
DC Flate Current.	0.8	Ampere	Output Circuit Efficiency 83	
DC Grid-No. 2 Current. 0.018 0.	025	Ampere	Cathode Bombarding Power* 150	Watts
DC Grid-No. 1 Current. 0.080 0.	100	Ampere	Cathode Bombarding Voltage, approximate. 600	Volts
Driving Power, approximate 100	100	Watts	Cathode Bombarding Current, approximate 0.250	Ampere


The cathode of the GL-8513, because of transit-time effects which raise the temperature of the cathode, is subjected to considerable back bombardment in ultra-high-frequency service. The amount of heating due to bombardment is a function of the operating conditions and frequency, and must be compensated for by a reduction of the cathode power input to prevent overheating of the cathode with resulting short life. In any case it is important from a tube life standpoint to keep the cathode power at as low a level as possible consistent with required performance. Bombarder power should be monitored by a suitable wattmeter or DC voltmeter and milliammeter arrangement. For long life, the tube should be put in operation with about 180 watts bombarding power. After the circuit has been adjusted for proper tube operation, bombarding voltage should be reduced to a value slightly above that at which circuit performance is affected. Minor circuit readjustment may be necessary after the above adjustment. The procedure for determining proper bombarding power should be repeated periodically.

Represents maximum usable cathode current (plate current plus current to each grid) for any condition of operation.


Measured with complete isolation between cathode and plate.

Output capacitance measured between anode and screen grid. Control grid connected directly to screen grid.

Useful power output including power transferred from driver stage.

ET-T1734A Page 1 9-67 ELECTRONI Courtesy of http://BlackRadios.terryo.org

TUBES

IN ACTION

Tetrode

GRID-PULSED SERVICE GROUNDED-GRID OPERATION

HEAT-SINK AND FORCED-AIR COOLED METAL AND CERAMIC

The GL-8866 is a reduced-size heatsink-cooled version of the GL-6283 especially designed for pulsed-amplifier or oscillator service at L-band frequencies. This tetrode is particularly well suited for use in airborne radar equipment such as IFF transponders.

The tube is capable of providing useful output at frequencies up to approximately 1500 megacycles.

Features of the 8866 include long life and reliability, long pulse width and high gain.

Electrical

	Mini- mum	Bogey	Maxi- mum	
Heater Voltage (See Note 1)	-	6.3	-	Volts
Heater Current.	_	3.8		Amperes
Cathode Heating Time	1	-	-	Minute
Direct Interelectrode Capacitances*				
Cathode to Plate†	-	0.006	-	μµ£
Input	-	20		uuf
Output	-	8.9	-	μµf
Mechani	cal			
Mounting Position-Any				

Inermon	
Cooling—Heat-sink and Forced-Air‡ Anode Temperature§, maximum) C
Seals	
Screen and Control Grid, approximate 1	Cubic Foot
Heater and Cathode, approximate	Cubic Foot per Minut
Ceramic Temperature at Any Point,	
aaximum	C

Thornal

RADIO-FREQUENCY POWER AMPLIFIER-CLASS C

Ounces

Maximum Ratings

Net weight, approximate.

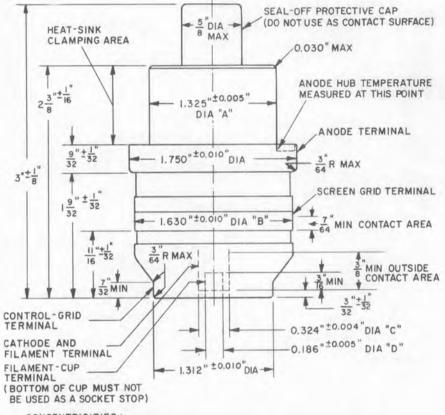
the state of the s		17 10 11
Pulsed Drive, 1250 Megacycles		Grou
	Kilovolts	D
DC Plate Current, during pulse	Amperes	D
DC Grid-No. 2 Voltage	Volts	D
DC Grid-No. 2 Input	Watts	D
DC Grid-No. 1 Voltage 200	Volts	
Plate Dissipation	Watts	D
Pulse Width 📢	Microseconds	D
Duty Factor $\Psi \phi$		
O CACHER V CLIEBER AND		D

9

Typical Operation

() press - person			
Grounded-Grid Service at 1100 Megacycle DC Plate Voltage		Output Circuit Kilovolts	
DC Plate Current, during pulse 1.4	1.0	Amperes	
DC Grid-No. 2 Voltage		Volts	
pulse	0	Milliamperes	
DC Grid-No. 1 Voltage	- 70	Volts	
90 Driving Power at the Tube, during	80	Milliamperes	
pulse	95	Watts	
ful)	1.0	Kilowatts	
Pulse Width	6	Microseconds	
Duty Factor	.02		

Note 1: Under the typical operating conditions shown the heater voltage should be reduced to approximately 6.0 volts because of back-heating resulting from transit-time effects.


Control grid connected directly to screen grid. Complete external shielding between cathode and plate.

- Forced air cooling should be applied during the application of any voltages.
- A suitable heat-sink clamping arrangement must be provided to limit the anode hub temperature to the value specified; the temperature is measured at the point indicated on the outline drawing. For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.

Pulse duration measured between points at 70 percent of peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse, ϕ Maximum ratio of on-time to elapsed time during any 7.5-millisecond period.

GL-8866 ET-T1734A Page 2 9-67

CONCENTRICITIES :

THE FOLLOWING TOTAL INDICATOR READINGS ARE MEASURED WITH RESPECT TO A CENTERLINE DETERMINED BY THE CENTERS OF THE ANODE TERMINAL AND CONTROL-GRID TERMINAL.

DIAMETER	"A"	0.030 INCH
DIAMETER	"B"-	0.016 INCH
DIAMETER	"C"-	0.036 INCH
DIAMETER	"D"-	0.042 INCH

TOTAL INDICATOR READING OF FILAMENT CUP-TERMINAL DIAMETER (D) MEASURED WITH RESPECT TO CENTER OF CATHODE AND FILAMENT-TERMINAL DIAMETER (C) 0.016 INCH.

Schenectady, N. Y. 12305

DATA FOR DEVELOPMENTAL TYPES

NOTE:

0

Both electrical and mechanical characteristics of developmental types are subject to change: therefore, it is recommended that designers consult with their General Electric field representative before designing equipment around development types. (See inside back cover)

A-0897

PLANAR TRIODE

DESCRIPTION AND RATING

For Grounded-Grid Oscillator And Amplifier Service

The A-0897 is a metal-and-ceramic, high-mu triode designed for use as a grounded-grid oscillator or amplifier at frequencies as high as 2500 megacycles.

*

 $1.03 \pm$

2.01

0.023

6.5

2

Volts

pf

pf

pf

Ounces

Amperes

GENERAL

Electrical

Cathode - Coated Unipotential

Heater Characteristics and Ratings Heater Voltage, AC or DC Heater Current at Ef = 6.3 volts Direct Interelectrode Capacitances Grid to Plate: (g to p) Grid to Cathode: (g to k) Plate to Cathode: (p to k)

Mechanical

Operating Position - Any

Net Weight, approximate

MAXIMUM RATINGS

Absolute-Maximum Values

Radio-Frequency Power Amplifier and Oscillator - Class C Telegraphy

Key-down Conditions per Tube Without Amplitude	Modulation¶	
Heater Voltage*	4.5 to 6.3	Volts
DC Plate Voltage	1000	Volts
Negative DC Grid Voltage	150	Volts
Peak Positive RF Grid Voltage	30	Volts
Peak Negative RF Grid Voltage	400	Volts
DC Grid Current	50	Milliamperes
DC Cathode Current	125	Milliamperes
Plate Dissipation#	10	Watts
Grid Dissipation	2.0	Watts
Envelope Temperature at Hottest Point ++	250	C

<u>A-0897</u>

MAXIMUM RATINGS (Continued)

Radio-Frequency Power Amplifier and Oscillator - Class C Telephony

Carrier Conditions per Tube for Use With a Max.	imum Modulation	Factor of 1.0
Heater Voltage*	4.5 to 6.3	Volts
DC Plate Voltage**	600	Volts
Negative DC Grid Voltage	150	Volts
Peak Positive RF Grid Voltage	30	Volts
Peak Negative RF Grid Voltage	400	Volts
DC Grid Current	50	Milliamperes
DC Cathode Current	100	Milliamperes
Plate Dissipation∆	7.0	Watts
Grid Dissipation	2.0	Watts
Envelope Temperature at Hottest Point ++	250	C

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

Average Characteristics			
Heater Voltage		6.3	Volts
Plate Voltage		600	Volts
Grid Voltage¶¶			Volts
Amplification Factor		95	
Transconductance		24800	Micromhos
Plate Current		75	Milliamperes
Radio-Frequency Oscillator - Class C§§			
Frequency	500	2500	Megacycles
Heater Voltage	6.0	5.0	Volts
DC Plate Voltage	900	900	Volts
DC Plate Current	90	90	Milliamperes
DC Grid Current	30	27	Milliamperes
DC Grid Voltage	-40	-22	Volts
Useful Power Output	40	17	Watts

A	-0897			
INITIAL CHAR	ACTERISTI	CS LIMIT	'S	
	Min.	Bogey	Max.	
Heater Current				
Ef = 6.3 volts	950	1030	1100	Milliamperes
Grid Voltage				
Ef = 6.3 volts, Eb = 600 volts,				
Ib = 75 ma	-1.3	-2.5	-3.5	Volts
Grid Voltage				
Ef = 6.3 volts, Eb = 600 volts,				
Ib = 1.0 ma	-7.0	-9.5	-15	Volts
Transconductance				
Ef = 6.3 volts, Eb = 600 volts,				
Ec adjusted for $Ib = 75$ ma	22000	24800	27500	Micromhos
Amplification Factor				
Ef = 6.3 volts, Eb = 600 volts,				
Ec adjusted for $Ib = 75$ ma	75	95	115	
Negative Grid Current				
Ef = 6.3 volts, $Eb = 600$ volts,				
Ec adjusted for $Ib = 75$ ma			3.0	Microamperes
Interelectrode Leakage Resistance				
Ef = 6.3 volts, Polarity of app				
d-c interelectrode voltage i				
such that no cathode emission	m			
results				
Grid to Cathode at 500 vo	lts			
d-c	50			Megohms
Interelectrode Capacitances				
Grid to Plate: (g to p)	1.89	2.01	2.13	Picofarads
Grid to Cathode: (g to k)	6.0	6.5	7.0	Picofarads
Plate to Cathode: (p to k)	0.018	0.023	0.029	Picofarads

SPECIAL PERFORMANCE TESTS

Min. Max.

Oscillator Power Output	
Tubes are tested for power output as an oscillator under the following conditions:	
Ef = 5.0 volts; $F = 2500$ MC, min; $Eb =$	
1000 volts; Ib = 90 ma	15
Low Pressure Voltage Breakdown Test	
Statistical sample tested for voltage	
breakdown at a pressure of 27 mm Hg.	
Tubes shall not give visual evidence	
of flashover when 1000 volts RMS, 60	
cps, is applied between the plate and grid terminals	

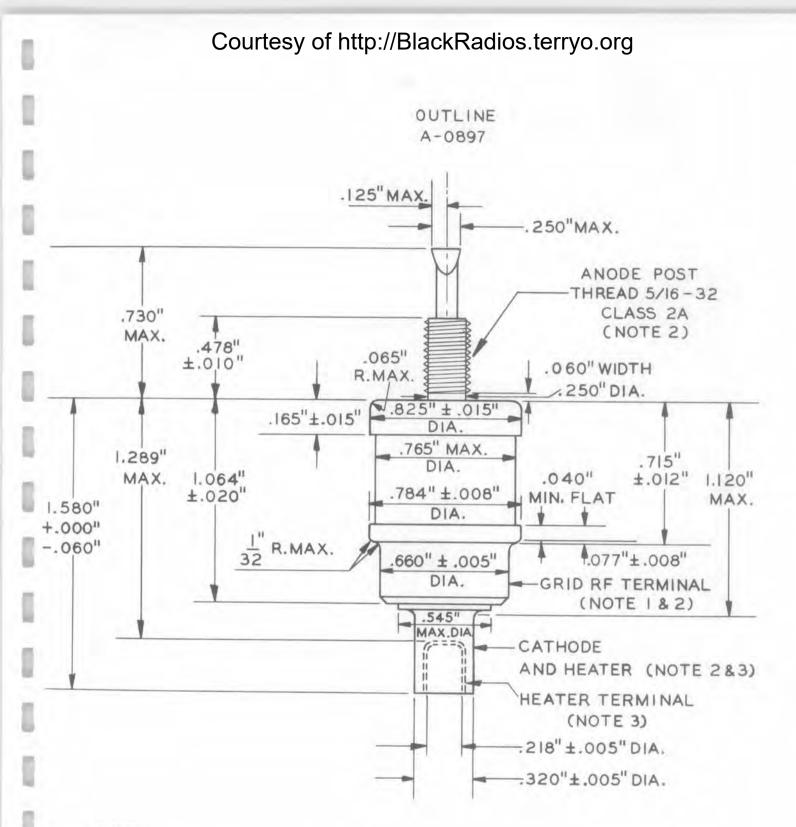
[

I

0

-- Watts

A-0897


- * The equipment designer should design the equipment so that heater voltage is centered at some value within the range of 4.5 to 6.3 volts. Heater voltage variations about the center value should be kept as small as practical and should not, in any case, exceed ±5%. The optimum center value of heater voltage depends on the cathode current and on other parameters of circuit design and operation. For specific recommendations, contact your General Electric tube sales representative.
- # Heater current of a bogey tube at Ef = 6.3 volts.
- § Measured in a special shielded socket.
- Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 percent of the carrier conditions.

1

0

1

- # With an adequate heat sink, the maximum dissipation rating is 100 watts.
- \triangle With an adequate heat sink, the maximum dissipation rating is 70 watts.
- §§ An adequate heat sink must be provided.
- ## Where long life and reliable operation are important, lower envelope temperatures should be used.
- ** For modulation factors less than 1.0, a higher d-c plate voltage may be used if the sum of the peak positive audio voltage and the d-c plate voltage does not exceed 1200 volts.
- ¶¶ Adjusted for Ib = 75 milliamperes.

NOTES :

- 1. Solder not to extend radially beyond grid RF terminal.
- Axis of threaded section shall be concentric with surface of Cathode-Fil. and Grid to within .020" T.I.R.. T.I.R. to be measured on cathode and grid contact areas within ±.040" of center of each area.
- 3. Total indicated runout of the heater-contact surface with respect to the cathode-contact surface shall not exceed 0.012".

PRELIMINARY TECHNICAL INFORMATION

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings. DEVELOPMENTAL TYPE

ZP-1015 PTI-69B Page 1 9-67

TUBES

INNOVATIONS

This technical information is proprietary and is furnished only as a service to customers.

ZP-1015

Tetrode

Grid-Pulsed Service Grounded-Grid Operation Heat-Sink and Forced-Air Cooled Metal and Ceramic

The ZP-1015 is a heat-sink-cooled version of the GL-7399 especially designed for pulsed-amplifier or oscillator service at L-band frequencies. This tetrode is particularly well suited for use in airborneIFF radar equipment.

The tube is capable of providing useful output at frequencies up to approximately 1500 megacycles.

Features of the ZP-1015 include long life and reliability, long pulse width and high gain.

ELECTRICAL	Minimum	Bogey	Maximum	
Heater Voltage	6.0	6.3	6.8	Volts
Heater Current Amplification	-	5.6	-	Amperes
Factor, G ₂ to G ₁	-	10.5	~	
200 Milliamperes DC Cathode Heating Time Direct Interelectrode Capacitan ces*	1	-	-	Minute
Cathode to Plate †	-	0.012	-	μµf
Input	-	24	-	μµf
Output	-	9.3	-	μµf
MECHANICAL				
Mounting Position – Any Net Weight, approximately			11	Ounces
THERMAL				
Cooling – Heat-sink and Forced-Air‡ Anode Temperature \$, maximum			250	С
Screen and Control Grid, approximate Heater and Cathode, approximate Ceramic Temperature at Any Point, maximum			1	Cubic Foot per Minute Cubic Foot per Minute C
RADIO-FREQUENCY POWER AMPLIFIER - CLASS	С			
Maximum Ratings				
Pulsed Drive, 1250 Megacycles DC Plate Voltage** DC Plate Current, during pulse DC Grid-No. 2 Voltage DC Grid-No. 2 Input DC Grid-No. 1 Voltage DC Grid-No. 1 Current	· · · · · · · · · · ·		6 6 	Kilovolts Amperes Kilovolts Watts Volts Amperes

The specifications of this type are subject to change. This device is now under development and is made available for experimental purposes only. For the most recent information concerning the status of this development, please consult your local Power Tube Department Regional Sales Office, or current Preliminary Technical Information for the same satelog number.

ZP-1015 PTI-69B Page 2 9-67

RADIO-FREQUENCY POWER AMPLIFIER - CLASS C (CONT'D)

Maximum Ratings (Cont'd)

Pulsed Drive, 1250 Megacycles (Cont'd)

Plate Dissipation			1				 				 			 		 							150	Watts
Pulse Width 🎙 🛇							 		÷.		 	1		 			١.		1.				15	Microseconds
Duty Factor $\forall \phi$	•	•	•	•		•	 	•		•	 			 		 			1			0	.01	

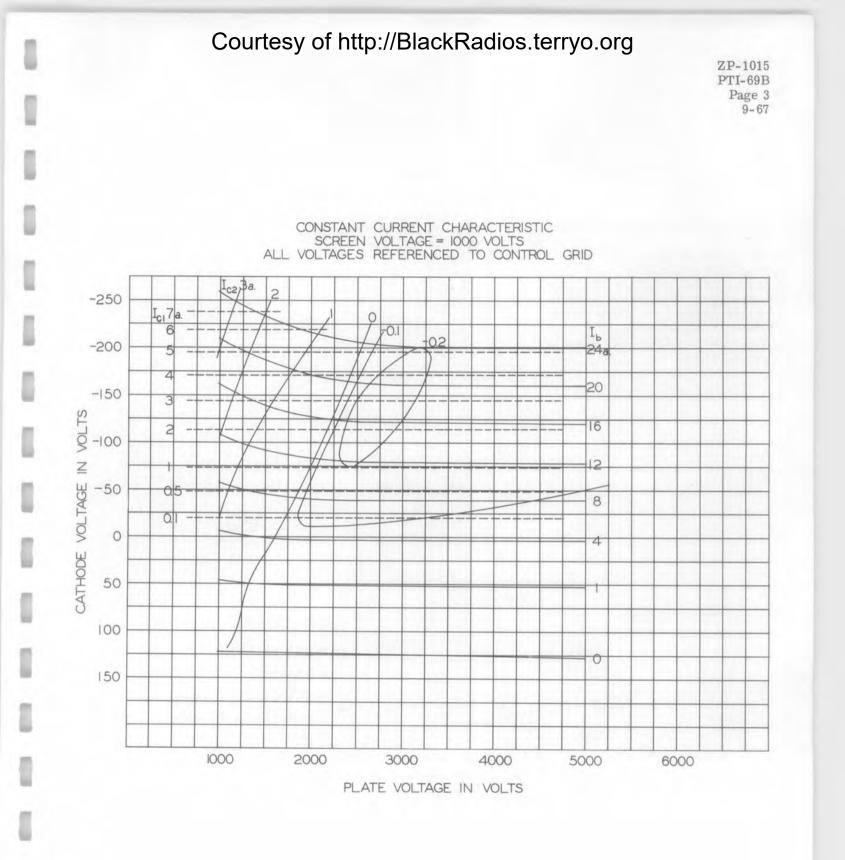
Typical Operation

Grounded-grid Service at 1100 Megacycles,	$3/4\lambda$	Output Circuit	
DC Plate Voltage			Kilovolts
DC Plate Current, during pulse			Amperes
DC Grid-No. 2 Voltage			Kilovolt
DC Grid-No. 2 Current, during pulse			Milliamperes
DC Grid-No. 1 Voltage			Volts
DC Grid-No. 1 Current, during pulse			Milliamperes
Driving Power at Tube, during pulse			Kilowatts
Power Output, during pulse (useful)			Kilowatts
Pulse Width ◊			Microseconds
Duty Factor ϕ		0.01	

* Control grid connected directly to screen grid.

† Complete external shielding between cathode and plate.

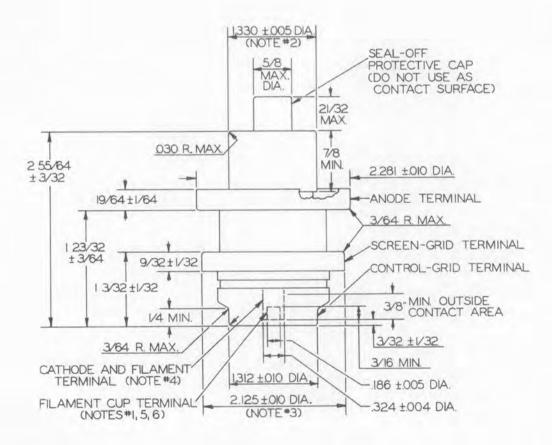
‡ Forced-air cooling should be applied during the application of any voltages.


§ A suitable heat-sink clamping arrangement must be provided to limit the anode hub temperature to the value specified; the temperature is measured at the point indicated on the outline drawing.

** A minimum surge-limiting resistance of 50 ohms must be placed between the plate of the tube and the B+ power supply at steady-state voltages greater than 3.5 kilovolts.

For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.
 Pulse duration measured between points at 70 percent of peak value. The peak value is defined as the maximum

value of a smooth curve through the average of the fluctuations over the top portion of the pulse.


Maximum ratio of on-time to elapsed time during any 15 millisecond period.

ZP-1015 PTI-69B Page 4 9-67

NOTES:

- Bottom of cup must not be used as a socket stop.
- 2. Max. eccentricity 0.015"
- 3. Max. eccentricity 0.008"
- 4. Max. eccentricity 0.018"
- Max. eccentricity 0.021" with respect to centerline determined by centers of anode and control-grid terminals.
- 6. Max. eccentricity 0.008" with respect to cathode terminal.

TUBE DEPARTMENT GENERAL B ELECTRIC Schenectady, N. Y. 12305

Courtes	of http://BlackRadios.terryo.org	
GENERAL (G) ELECTRIC POWER TUBE DEPARTMENT Schenectady 5, N. Y.	PRELIMINARY TECHNICAL INFORMATION These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.	DEVELOPMENTAL TYPE ZP1016-B PTI-115 Page 1 5-1-63

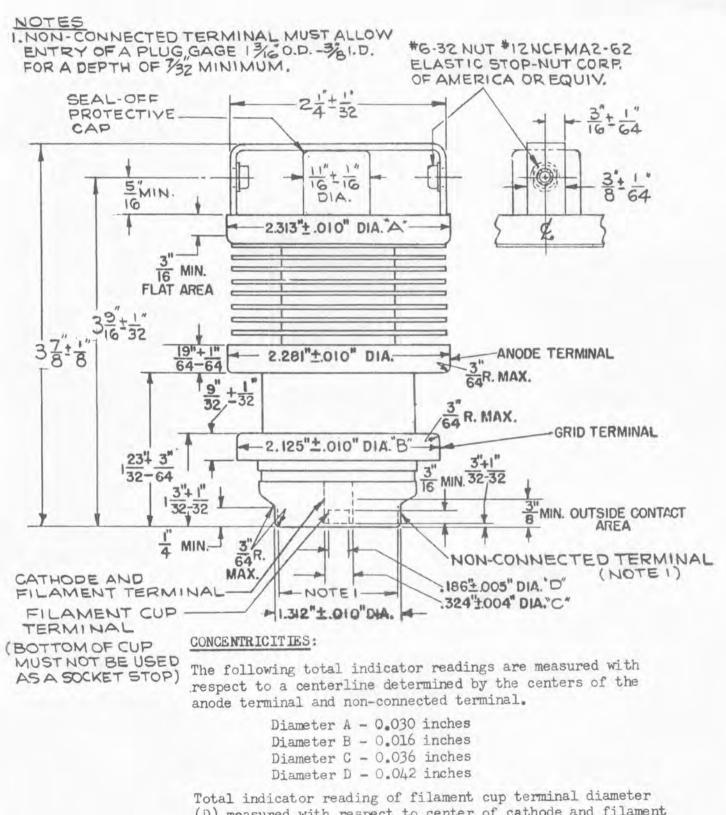
This technical information is proprietary and is furnished only as a service to customers.

ZP-1016-B

TRIODE

Metal and Ceramic

High Voltage Series-Regulator Service


The ZP-1016-B is a metal-ceramic triode for high voltage series regulator service. Its features make this tube very desirable for use in regulation of DC voltages up to 10,000 volts. An average power handling capability of 300 watts helps fill a void in the power spectrum of tubes available for this type of service.

ELECTRICAL	Minimum	Bogey	Maximu	m
Heater Voltage	-	6.3	-	Volts
Heater Current	-	3.8	-	Amperes
Cathode Heating Time Direct Interelectrode Capacitances	1	-	-	Minute
Output	-	6.7		μuf
Input	-	8	-	
Plate to Cathode	-	-	.35	μμf
Amplification Factor	-	10	-	
Plate Current @ $E_g = 0$; $E_b = 600$ volts Grid Voltage @ $E_b = 10,000$ volts;	-	0.300	-	Ampere
$I_b = 0.001$ ampere	-	1300		Volts
MECHANICAL				
Mounting Position - Any				
Net Weight, approximate			1.0	Pound
THERMAL				
Cooling - Forced Air				
Anode Temperature, maximum			180	С
Seals and Tube Temperature at Any Point, maximum			200	C
HIGH VOLTAGE SERIES REGULATOR				0
Maximum Ratings				
DC Plate Holdoff Voltage*			. 10	Kilovolts
DC Grid Voltage**			-4	Kilovolts
Plate Dissipation			4	
DC Plate Current			300	Watts
			200	Milliampere
* Minimum circuit impedance in combined astheda and analy size				

* Minimum circuit impedance in combined cathode and anode circuits equals 4000 ohms. ** Equivalent series $R_g = 0.25$ to 1.0 megohms.

The specifications of this type are subject to change. Delivery of samples and the existence of these data do not imply continued availability of types with the same characteristics or dimensions. For the most recent information concerning the status of this device, please consult your local Power Tube Department Regional Sales Office.

ZP-1016-B PTI-115 Page 2 5-1-63

(D) measured with respect to center of cathode and filament terminal diameter (C) 0.016 inches.

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office. DEVELOPMENTAL TYPE

> ZP-1024 OTI-76 Page 1 9-1-62

This technical information is proprietary and is furnished only as a service to customers.

ZP-1024

TRIODE

Internal Feedback for Oscillator Service Grounded-Grid Operation

POWER TUBE DEPARTMENT

Schenectady 5, N.Y.

Heat-Sink and Forced-Air Cooled Metal and Ceramic

The ZP-1024 is a heat-sink-cooled triode especially designed for pulsed-oscillator service in L-band, providing useful output at frequencies up to approximately 1700 megacycles.

The tube features internal feedback which eliminates the need for the complicated external circuit arrangements normally required in oscillator service.

Other features of the ZP-1024 are long life and reliability, long pulse width and high power output capability.

ELECTRICAL	Minimum	Bogey	Maximum	
Heater Voltage	-	6.3	-	Volts
Heater Current	-	3.8	-	Amperes
Cathode Heating Time	1	-	-	Minute
Direct Interelectrode Capacitances				
Cathode to Plate †		0.5	-	μμί
Input	-	20	-	μμf
Output	-	7.8		μμf
ouput		1.0		by the second se
MECHANICAL				
Mounting Position - Any				
Net Weight, approximately	• • • • • • • •	• • • • • •	9	Ounces
THERMAL				
Cooling - Heat-sink and Forced-Air‡				
Anode Temperature §, maximum			. 250	C
Seals				
Screen and Control Grid, approximate			. 1	Cubic Foot per Minute
Heater and Cathode, approximate			. 1	Cubic Foot per Minute
Ceramic Temperature at Any Point, maximum				C
PLATE-PULSED OSCILLATOR - CLASS C				
Maximum Ratings				
DC Plate Voltage, during pulse			. 6.5	Kilovolts
DC Plate Current, during pulse				Amperes
DC Grid Voltage, during pulse			. 0.5	Volts
				Watts
Plate Dissipation				
Pulse Width				Microsecond
Duty Factor $\varphi $	*******		001	

The specifications of this type are subject to change. This device is now under development and is made available for experimental purposes only. For the most recent information concerning the status of this development, please consult your local Tube Department Regional Sales Office, or current Preliminary Technical

ZP-1024 OTI-76 Page 2 9-1-62

PLATE-PULSED OSCILLATOR - CLASS C (Cont'd)

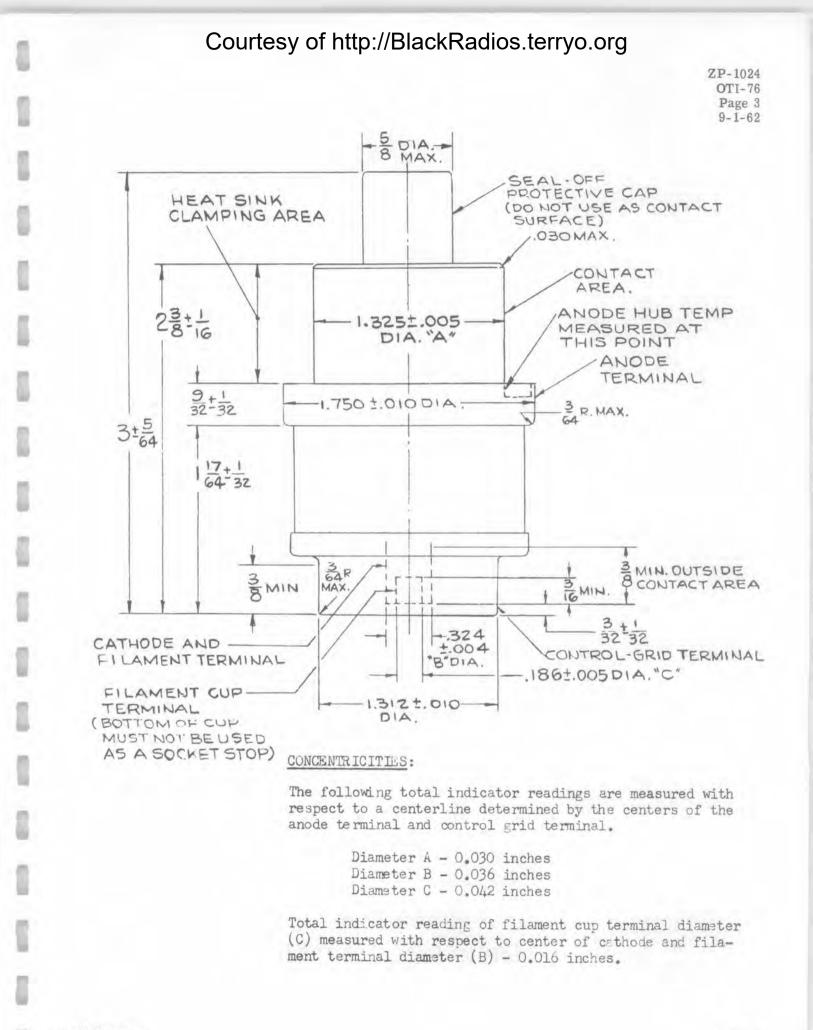
Typical Operation

Grounded-Grid Service at 1100 Megacycles, $3/4 \lambda$ Output Circuit

DC Plate Voltage, during pulse 6	5.0 Kilovolts
DC Plate Current, during pulse 6.	25 Amperes
DC Grid Current, during pulse	2.5 Amperes
Power Output, during pulse (useful)	15 Kilowatts
Pulse Width	1 Microsecond
Duty Factor	01

† Complete external shielding between cathode and plate.

‡ Forced-air cooling should be applied during the application of any voltages.


§ A suitable heat-sink clamping arrangement must be provided to limit the anode hub temperature to the value specified; the temperature is measured at the point indicated on the outline drawing.

♥ For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.

0

O Pulse duration is measured between points at 70 percent of the peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.

Maximum ratio of on-time to elapsed time during any 1-millisecond period.

Courtesy of http://BlackRadios.terryo.org PRELIMINARY ELECTRONIC **TECHNICAL INFORMATION** INNOVATIONS

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.

DEVELOPMENTAL TYPE

> ZP-1025 PTI-80C Page 1 9-67

This technical information is proprietary and is furnished only as a service to customers

ZP-1025

TRIODE

Internal Feedback for Oscillator Service Grounded-Grid Operation

TUBES

IN ACTION

Heat-Sink and Forced-Air Cooled Metal and Ceramic

The ZP-1025 is a heat-sink-cooled triode especially designed for pulsed oscillator service in L-band. This tube is particularly well suited for use in airborne or ground-based radar equipment.

The tube features internal feedback which eliminates the need for the complicated external circuit arrangements normally required in oscillator service.

Other features include small size, high peak power, long-pulse-width capability, long life and reliability.

	Minimum	Bogey	Maximum	
ELECTRICAL				
Heater Voltage* Heater Current Cathode Heating Time Direct Interelectrode Capacitances Cathode to Plate Input Output	- 3,5 1 - -	6.3 3.8 - 0.45 15.5 5.9	- - - -	Volts Amperes Minute µµf µµf µµf
MECHANICAL				
Mounting Position – Any Net Weight, approximate			. 31/4	Ounces
THERMAL Cooling – Heat-Sink and Forced Air Anode Temperature§			. 250	с
Ceramic Temperature at Any Point, maximum			. 200	C
PLATE-PULSED OSCILLATOR - CLASS C				
Maximum Ratings				
DC Plate Voltage, During Pulse DC Plate Current, During Pulse DC Grid Voltage, During Pulse DC Grid Current, During Pulse Plate Dissipation § Grid Dissipation Pulse Width \diamond Duty Factor ϕ		· · · · · · · · · · · · · · · · · · ·	. 10.0 400 . 5.0 . 110 . 3.5 . 10	Kilovolts Amperes Volts Amperes Watts Watts Microseconds

The specifications of this type are subject to change. Delivery of samples and the existence of these data do not imply continued availability of types with the same characteristics or dimensions. For the most recent information concerning the status of this device, please consult your local Tube Department Regional Sales Office.

ZP-1025 PTI-80C Page 2 9-67

TYPICAL OPERATION

Grounded-Grid Service at 1300 Megacycles, 3/4 λ Output Circuit

DC Plate Voltage, During Pulse	8.0	6.0	Kilovolts
DC Plate Current, During Pulse	9.0	7.0	Amperes
DC Grid Current, During Pulse (Grid Resistor = 50 Ohms)		4.3	Amperes
Power Output, During Pulse (useful)	40.0	24.0	Kilowatts
Pulse Width	10	10	Microseconds
Duty Factor	0.003	0.001	

GRID-PULSED OSCILLATOR - CLASS C

Maximum Ratings

DC Plate Voltage	2.5	Kilovolts
DC Plate Current, During Pulse		Amperes
DC Grid Voltage		Volts
Plate Dissipation		Watts
Pulse Width 🔿	15	Microseconds
Duty Factor ØØ		

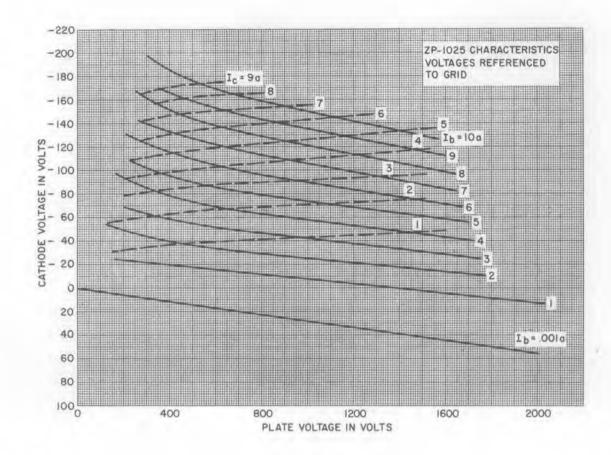
Typical Operation

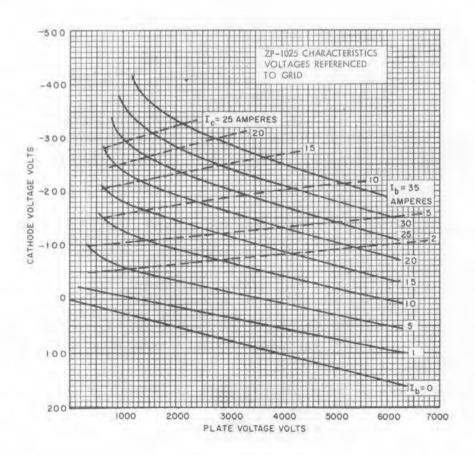
Grounded-Grid Circuit at 1100 Megacycles, $1/4 \lambda$ Output

DC Plate Voltage	1950	2200	Volts
DC Plate Current, During Pulse 2.2	2.6	2.7	Amperes
DC Grid Voltage Supply**	-104	-104	Volts
DC Grid Current, During Pulse	1.2	1.25	Amperes
Power Output, During Pulse (useful) 1.5	2.0	2.4	Kilowatts
Pulse Width 10	10	10	Microseconds
Duty Factor	0.02	0.02	

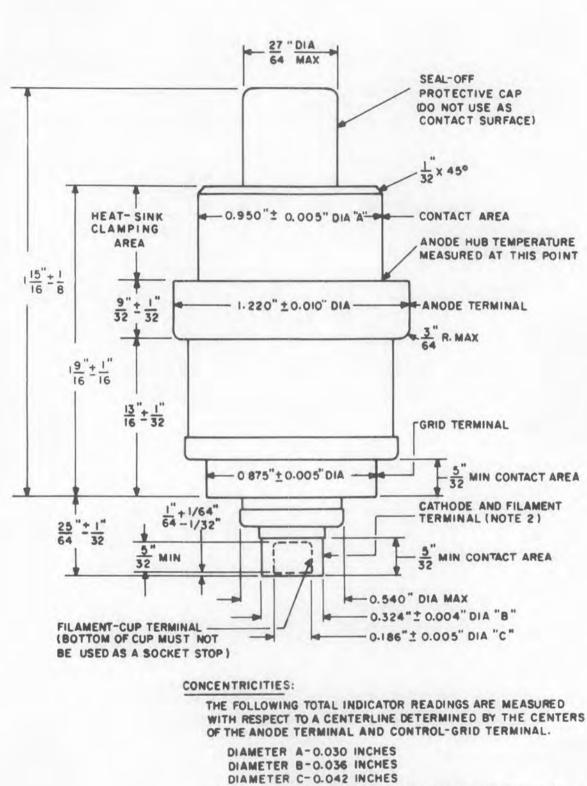
* Because of back-heating due to transit time effects, it may be necessary to reduce the heater voltage. For the 1100 mcs, 2 kw, 0.02 duty condition, the typical heater voltage is 5.5 volts. The optimum heater voltage for any application should be determined by RF performance testing.

§ A suitable clamp-on radiator or heat-sink clamping arrangement must be provided to limit the anode hub temperature to the value specified. Higher plate dissipation is allowable with provision for proper cooling.


O Pulse duration is measured between points at 70 percent of the peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse. For applications requiring longer pulses, refer to the tube manufacturer.


øMaximum ratio of on-time to elapsed time during any 3.3-millisecond period.

\$\$ Maximum ratio of on-time to elapsed time during any 75-millisecond period.


** With a series grid resistance of 50 ohms.

ZP-1025 PTI-80C Page 3 9-67

ZP-1025 PTI-80C Page 4 9-67

TOTAL INDICATOR READING OF FILAMENT- CUP TERMINAL DIAMETER (C) MEASURED WITH RESPECT TO CENTER OF CATHODE AND FILAMENT- TERMINAL DIAMETER (B)-0.016 INCHES.

TUBE DEPARTMENT

GENERAL 🍪 ELECTRIC

Schenectady N Y 12305

	Courtesy NERAL (G) ELECTRIC POWER TUBE DEPARTMENT Schenectady 5, N. Y.	y of http://BlackRadios.terryo.e DBlective TECHNICAL INFORMATION These ratings represent the design objective for product. Refer to the Preliminary Technical Inform sheet for ratings currently achieved in the progra towards design objectives. If PTI sheets do not exist sult your local Tube Department Regional Sales Office.	r this nation ession t, con-	DEVELOPMENTAL TYPE ZP-1026 OTI-80 Page 1 11-1-62
1	This technical info	rmation is proprietary and is furnished only as a service to custome	ers.	
·		ZP-1026		
	And the second second	TRIODE		
	Grid-Pulsed Amplifier Service Grounded-Grid Operation	Heat		ced-Air Cooled tal and Ceramic
	This tube is particularly well suite	ooled triode especially designed for grid-pulsed a d for use in navigational aid beacons (TACAN). duty capability, long life and reliability.	mplifier serv Features incl	vice in L-band. lude small size,
	ELECTRICAL			
	Heater Current	· · · · · · · · · · · · · · · · · · ·	3.8	Volts Amperes Minute
	Input	es	5.9	μµf

MECHANICAL

Mounting Position - Any			
Net Weight, approximately	***************************************	3 1/4	Ounces

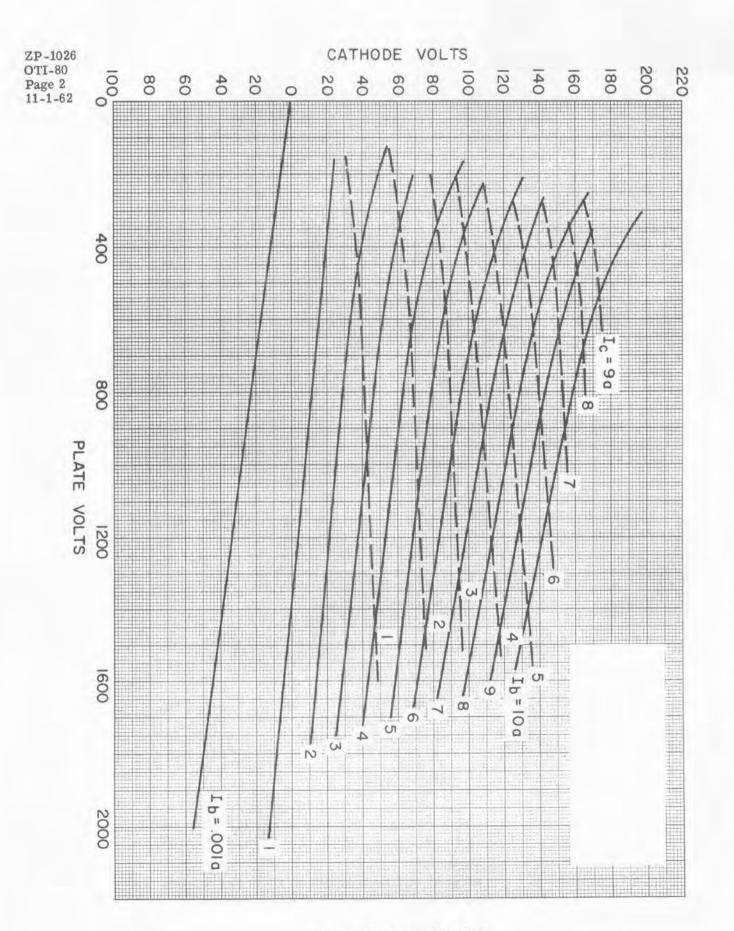
THERMAL

Cooling - H	-sink and Forced-air	
Anode Temp	ture §	C
Ceramic Te	erature at Any Point	С

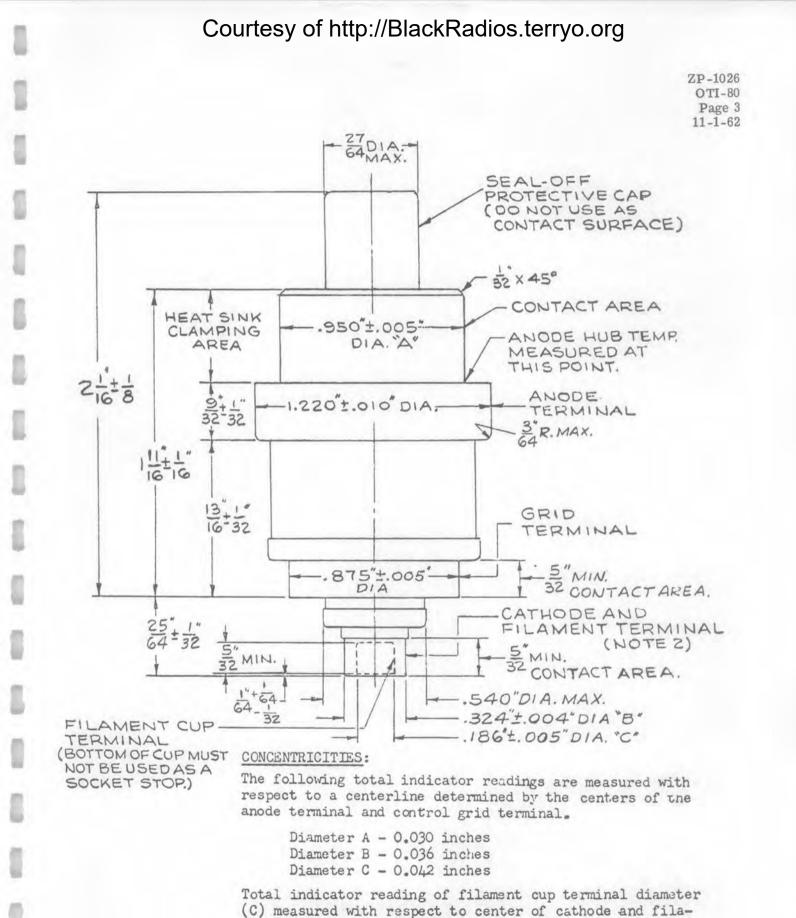
GRID-PULSED AMPLIFIER - CLASS AB2

Maximum Ratings		
DC Plate Voltage	2,5	Kilovolts
DC Plate Current, during pulse		Amperes
DC Grid Voltage	-200	Volts
Plate Dissipation		Watts
Pulse Width	10	Microsecond
Duty Factor Ø	.04	
Typical Operation		
Grounded-Grid Circuit at 1215 mcs, 3/4 λ Output		
DC Plate Voltage	2000	Volts
DC Plate Current, during pulse	1.6	Amperes
	mm	

DC Grid Voltage	-75	Volts
DC Grid Voltage, during pulse	0	Volts
DC Grid Current, during pulse	.5	Amperes
Power Output, during pulse (useful)	750	Watts
Drive Power, during pulse	95	Watts
	8	Microseconds
Duty Factor	.03	


* Because of back-heating due to transit time effects, it may be necessary to reduce the heater voltage.

§ A suitable heat-sink clamping arrangement must be provided to limit the anode hub temperature to the value specified.


ø Maximum ratio of on-time to elapsed time during any 250 microsecond period.

> Pulse duration is measured between points at 70 percent of the peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.

The specifications of this type are subject to change. This device is now under development and is made available for experimental purposes only. For the most recent information concerning the status of this development, please consult your local Tube Department Regional Sales Office, or current Preliminary Technical

Voltages Referenced to Grid

ment terminal diameter (B) - 0.016 inches.

terminal diameter (B) = 0.

Courtesy of http://BlackRadios.terryo.org JENERAL 🋞 ELECTRIC **TECHNICAL INFORMATION** DEVELOPMENTAL These ratings represent the design objective for this POWER TUBE DEPARTMENT product. Refer to the Preliminary Technical Information TYPE Schenectady 5, N.Y. sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, con-ZP-1029 sult your local Power Tube Department Regional Sales **OTI-77** Office. Page 1 9 - 1 - 62This technical information is proprietary and is furnished only as a service to customers. ZP-1029

HIGH-FREQUENCY DIODE

The ZP-1029 is a heat-sink-cooled diode especially designed for r-f switching service at UHF frequencies.

ELECTRICAL

Heater Voltage	6.3	Volts
Heater Current		
Cathode Heating Time, minimum	1	Minute
Plate-Cathode Capacitance	15	μµf

MECHANICAL

Mounting Position - Any

THERMAL

Cooling – Heat-Sink and Forced-Air		
Maximum temperature	250	С

RF SWITCHING DIODE

Maximum Ratings

Peak Plate Current	1.1			1.				 		 						 				 					 10	Amperes
DC Plate Current ,		1.	1.1				 	 		 				4	1		1	1	1	 	ù.		1	2	 0.300	Amperes
Peak Inverse Voltage	e*	2.2		2.4		 ١.	 		ς.	 	1.2	÷	1.	÷.	÷	 1		1		 	ŭ	 1			 5500	Volts
Plate Dissipation**				10.1	a,				ς,	 							1	1		 ÷.		 4			 110	Watts

Typical Operation

Peak Forward Plate	Voltage @ 10 amperes	***************************************	100	Volts
--------------------	----------------------	---	-----	-------

* Maximum duration of inverse pulse - 1.5 microseconds.

** Determined by efficiency of heat-sink; maximum temperature limitation applies.

The specifications of this type are subject to change. This device is now under development and is made available for experimental purposes only. For the most recent information concerning the status of this development, please consult your local Power Tube Department Regional Sales Office, or current Preliminary Technical Information for the same catalog number. ET-J37

ZP-1029 OTI-77 Page 2 9-1-62

ZP_1029

TENTATIVE CHARACTERISTIC

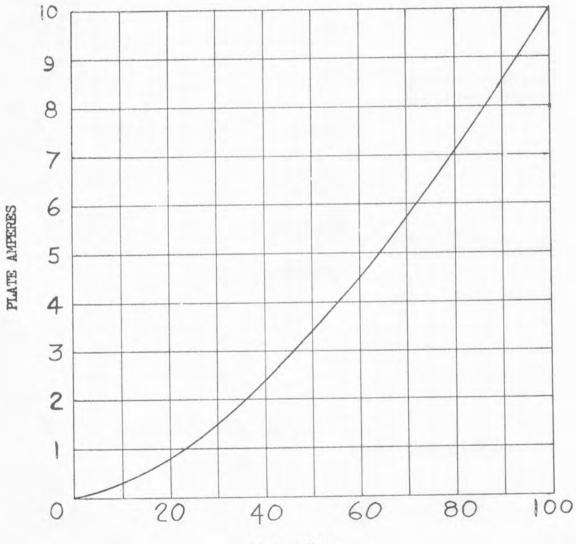
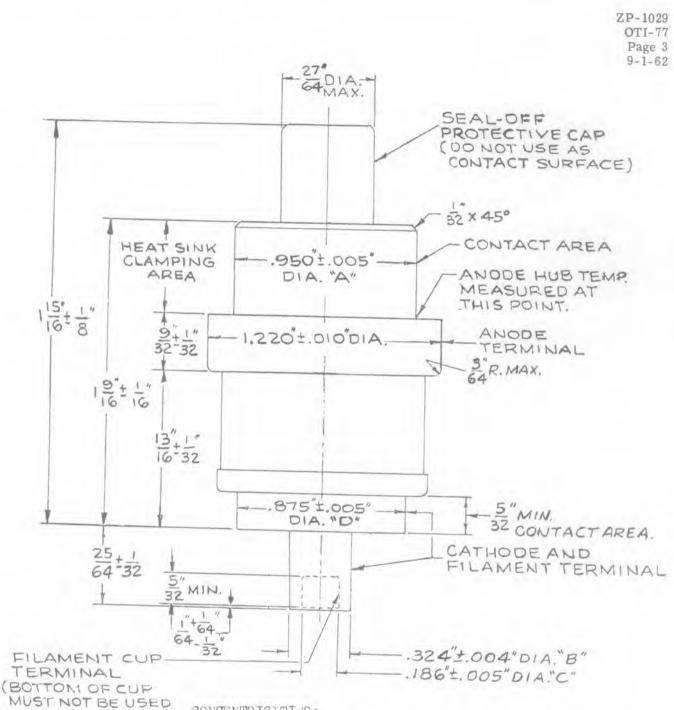



PLATE VOLTS

4-26-62

CONCENTRICITIES:

The following total indicator readings are measured with respect to a centerline determined by the centers of the anode terminal and diameter "D".

Diameter A = 0.030 inches Diameter B = 0.036 inches Diameter C = 0.042 inches

Total indicator reading of filament cup terminal diameter (C) measured with respect to center of cathode and filament terminal diameter (B) - 0.016 inches.

AS A SOCKET STOP)

OBJECTIVE FOR DEVELOPMENTAL TYPE

<u>Y-1032*</u>

PLANAR TRIODE

The Y-1032 is a medium-mu triode of ceramic and metal planar construction primarily intended for radio-frequency amplifier service well into the UHF range. A feature of the tube is its operation at low values of plate voltage.

GENERAL

Electrical

Cathode - Coated Unipotential

Heater Characteristics and Ratings			
Heater Voltage, AC or DC+	6.3±0.3	Volts	
Heater Current [‡]	0.24	Amperes	
Direct Interelectrode Capacitances		amporco	
→ Grid to Plate	1.5	pf	
Input	1.7	pf	
Output	0.02		
Heater to Cathode		pf	
heater to cathode	1.1	pf	
Mechanical			
Operating Position - Any			
MAXIMUM RATINGS			
Absolute-Maximum Values			
Plate Voltage	60	Volts	
Positive DC Grid Voltage	0	Volts	
Plate Dissipation	0	VOILS	

Plate Dissipation 0.6 Watts → DC Cathode Current 11 Milliamperes Heater-Cathode Voltage Heater Positive with Respect to Cathode 50 Volts Heater Negative with Respect to Cathode 50 Volts Grid Circuit Resistance 0.01 Megohms Envelope Temperature at Hottest Point 250 C

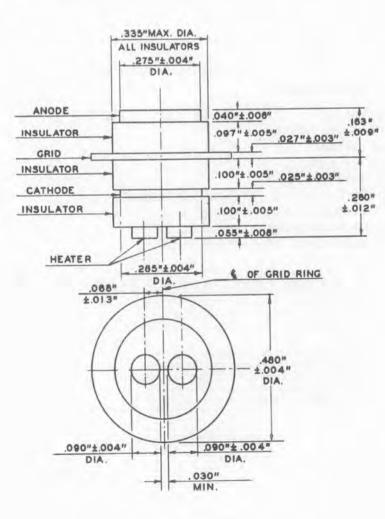
Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

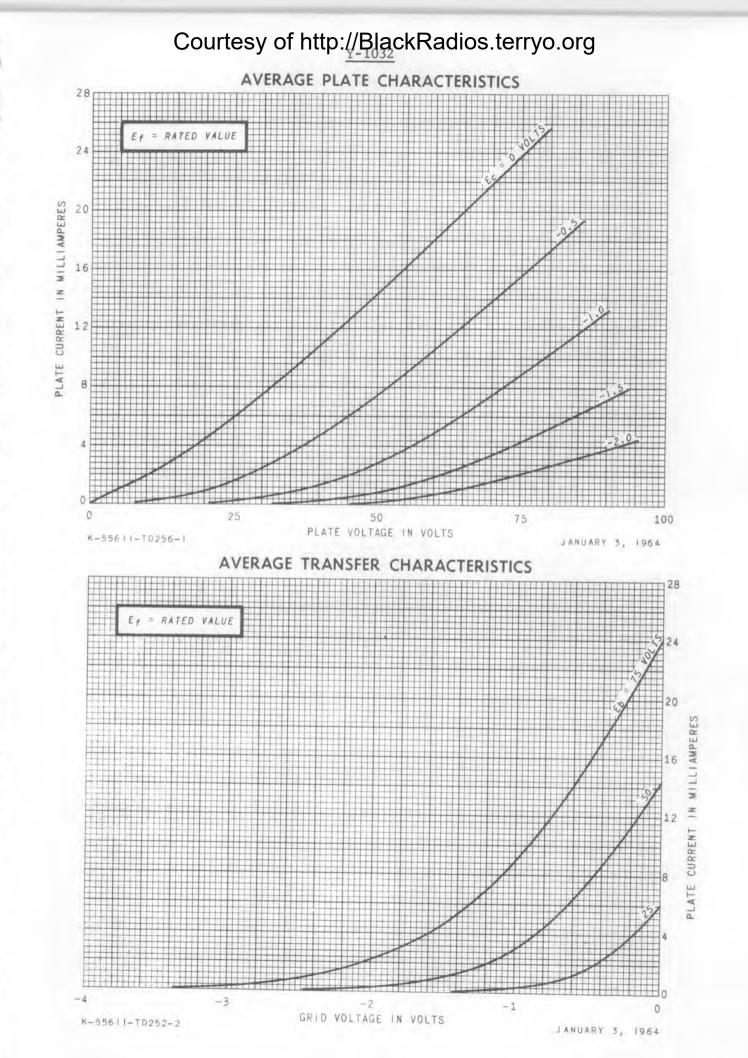
The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

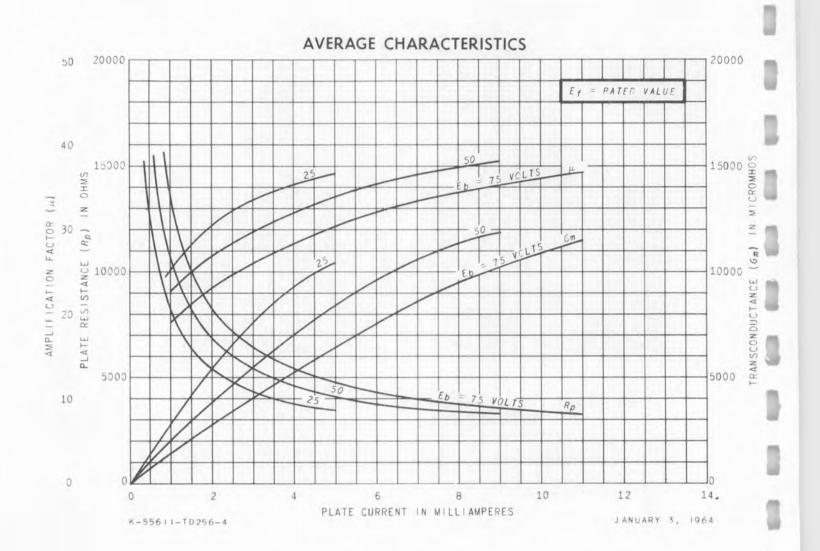
The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

Y-1032

CHARACTERISTICS AND TYPICAL OPERATION


Average Characteristics


50	26.5	Volts
68	33	Ohms
37	36	
3400	3600	Ohms
11000	10000	Micromhos
7.5	4.7	Milliamperes
	50	Volts
	68	Ohms
	7.5	Milliamperes
	7.5	Megacycles
	4.0	Decibels
	68 37 3400 11000	68 33 37 36 3400 3600 11000 10000 7.5 4.7 50 68 7.5 7.5


* Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.

- + The equipment designer should design the equipment so that the heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- # Heater current of a bogey tube at Ef = 6.3 volts.

Outline Drawing

4/27/64 (B) Supersedes 1/7/64 (B)

TECHNICAL INFORMATION

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office. DEVELOPMENTAL TYPE

> ZP-1034 OTI-88A Page 1 9-67

This technical information is proprietary and is furnished only as a service to customers.

ZP-1034

TETRODE

Pulsed Service Grounded-Grid Operation

INNOVATIONS

TUBES

IN ACTION

Water Cooled Metal and Ceramic

Integral Water Jacket

The ZP-1034 is a small-size, four-electrode transmitting tube especially designed for pulsed-amplifier service at L-band frequencies. This tetrode is particularly well suited for use in ground-based equipment such as steerable array radar.

The tube is capable of providing useful output at frequencies up to approximately 1500 megacycles.

 $Features of the {\tt ZP-1034} include long life and reliability, long pulse width, high gain and broad-banding capability.$

These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where performance and reliability are important.

ELECTRICAL

λ

T

	Minimum	Deserves	10	
Heater Voltage	6.0	Bogey 6.3	Maximum 6.8	Volts
Heater Current	0.0	5.5		10000
Amplification		0.0		Amperes
		10.5		
Factor, G ₂ to G ₁ $E_{g2} = 275$ Volts DC, $E_b = 1000$ Volts DC, $I_b = 200$ Milliamperes DC		10.5		
Cathoda Heating Time	4	24		
Cathode Heating Time.	1			Minute
Direct Interelectrode Capacitances*				
Cathode to Plate †		0.012		uuf
Input		24.0		uuf
Output		9.8		uuf
MECHANICAL				
Mounting Position - Any				
Net Weight, approximate			. 13	Ounces
THERMAL				
Cooling - Water and Forced Air ø				
Water Flow				
Anode			0.5	Minimum
			. 0.0	
				Gallons per
Outlet Temperature			-	Minute
Outlet Temperature		*********	. 70	Maximum C

The specifications of this type are subject to change. Delivery of samples and the existence of these data do not imply continued availability of types with the same characteristics or dimensions. For the most recent information concerning the status of this device, please consult your lacal Tube Department Regional Sales Office.

ZP-1034 OTI-88A Page 2 9-67

THERMAL (Cont'd.)

Air Flow		
Anode Ceramic, approximate	1	Cubic Foot per Minute
Screen and Control Grid, approximate		Cubic Foot per Minute
Heater and Cathode, approximate		Cubic Foot per Minute
Ceramic Temperature at any Point		Maximum C

RADIO-FREQUENCY POWER AMPLIFIER - CLASS C

Maximum Ratings

Pulsed Drive, 1300 Megacycles	
DO TIMO TOTAMO CONTRACTORIO CONTRACTORICO CONTRACTICO CONTRACTORICO CONTRACTICO CONTRACTORICO CONTRACTORICO CONTRACTORICO CONTRACTICO CONTRATICO CONTRACTICO CONTRACTICO CONTRACTICO CONTRACTICO CONTRAC	Kilovolts
DC Plate Current, during pulse 6	Amperes
DC Grid-No. 2 Voltage	Kilovolts
DC Grid-No. 2 Input#	Watts
DC Grid-No. 1 Voltage	Volts
DC Grid-No. 1 Current	Amperes
Thate Dissipation ", , , , , , , , , , , , , , , , , , ,	Watts
Pulse Width ** ††	Microseconds
Duty Factor ** 00	

Typical Operation

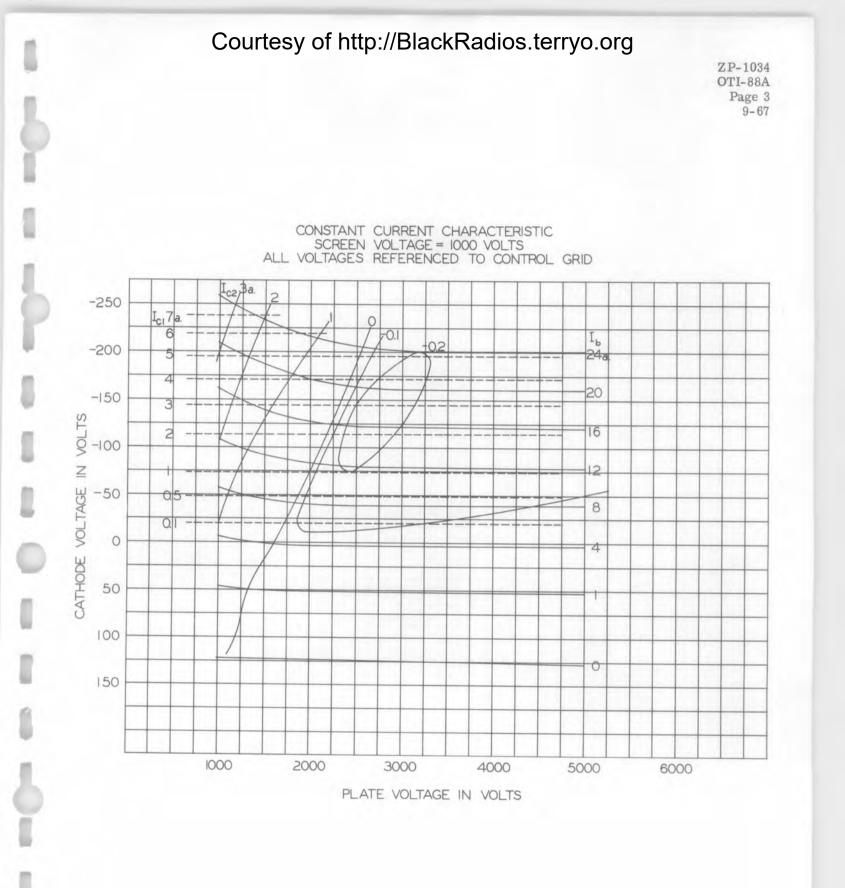
Grounded-grid	Circuit at	1300	Megacycles,	$\lambda/4$	Output	Circuit
---------------	------------	------	-------------	-------------	--------	---------

DC Plate Voltage ## 4.0	Kilovolts
DC Plate Current during pulse 3.5	Amperes
DC Grid-No. 2 Voltage	Volts
DC Grid-No. 2 Current, during pulse 75	Milliamperes
DC Grid-No. 1 Voltage	Volts
DC Grid-No. 1 Current, during pulse	Milliamperes
Driving Power at Tube, during pulse	Watts
Power Qutput, during pulse (useful)	Kilowatts
Pulse Width †† 15	Microseconds
Duty Factor 0.01	

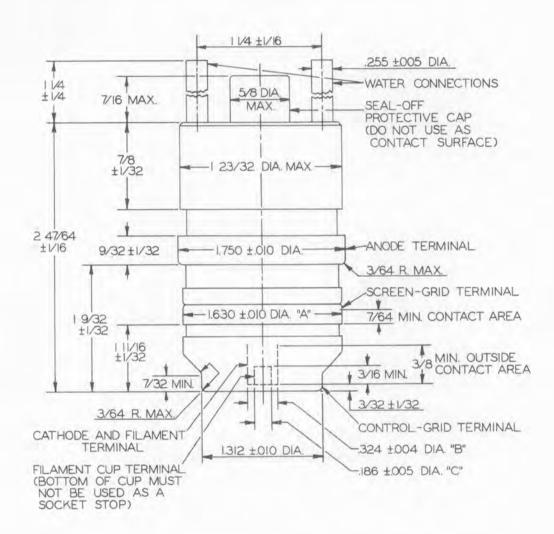
*Control grid connected directly to screen grid.

† Complete external shielding between cathode and plate.

Water and forced air cooling to be applied during the application of any voltages.


Maximum average value.

** For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.


†† Pulse duration measured between points at 70 percent of peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.

do Maximum ratio of on-time to elapsed time during any 1.5-millisecond period.

##A minimum surge-limiting resistance of 50 ohms must be placed between the plate of the tube and the B+ power supply at steady-state voltages greater than 3.5 kilovolts.

ZP-1034 OTI-88A Page 4 9-67

CONCENTRICITIES: The following total indicator readings are measured with respect to a centerline determined by the centers of the anode terminal and control grid terminal.

> Diameter A - 0.016 inches Diameter B - 0.036 inches Diameter C - 0.042 inches

Total indicator reading of filament cup terminal diameter (C) measured with respect to center of cathode and filament terminal diameter (B) - 0.016 inches.

> **TUBE DEPARTMENT** GENERAL 🐲 ELECTRIC Cohonactady N V 12205

Courtesy of http://BlackRadios.terryo.org ELECTRONI PRELIMINARY INNOVATIONS **TECHNICAL INFORMATION**

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.

DEVELOPMENTAL TYPE

> ZP-1038 **PTI-162A** Page 1 9-67

This technical information is proprietary and is furnished only as a service to customers. ZP-1038

TETRODE

Pulsed Service Grounded-Grid Operation

IN ACTION

TUBES

Forced-Air Cooled Metal and Ceramic

Integral Radiator

The ZP-1038 is a small-size, four-electrode transmitting tube especially designed for RF grid-pulsed or plateand-screen pulsed amplifier service at L-band frequencies. This tetrode is particularly well suited for use in airborne or ground-based radar equipment.

The tube is capable of providing useful output at frequencies up to approximately 1500 megacycles.

Features of the ZP-1038 include long life and reliability, long pulse width, high peak power and high gain, broadbanding capability, and resistance to shock and vibration.

These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where high performance and reliability are important.

ELECTRICAL	Minimum	Bogey	Maximum	
Heater Voltage (See Note 1)	-	6.3	6.8	Volts
Heater Current	÷	5.6	-	Amperes
Cathode Heating Time Direct Interelectrode Capacitances*	1	-	-	Minute
Input	-	24	-	μµf
Output		9	-	$\widetilde{\mu}\widetilde{\mu}\mathbf{f}$ f
MECHANICAL				
Mounting Position – Any				
Net Weight			0.8	Pounds
THERMAL				
Cooling - Forced Air‡				
Radiator§				
Plate Dissipation	600	400	~	Watts
at sea level	9	4.5	-	Min Cubic Feet per Minute
Static Pressure, approximate		0.2	-	Inches-Water
Anode Hub Temperature 🛆			250	Max C
Seals				
Screen and Control Grid, approximate			1	Cubic Foot per Minute
Heater and Cathode, approximate			1	Cubic Foot per Minute
Ceramic Temperature at any Point			200	Max C
Note 1. Descure the termeneture of the orthological				

Note 1: Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater-voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.

The specifications of this type are subject to change. This device is now under development and is made available for experimental purposes only. For the most recent information concerning the status of this development, please consult your local Power Tube Department Regional Sales Office, or current Preliminary Technical Information for the same catalog number.

ZP-1038 PTI-162A Page 2 9-67

RADIO-FREQUENCY POWER AMPLIFIER - CLASS B

Maximum Ratings

ite- and Screen-Grid Pulsed, 500 Megacycles	
DC Plate Voltage, during pulse 1	0 Kilovolts
DC Plate Current, during pulse 1	0 Amperes
DC Grid-No. 2 Voltage, during pulse 200	0 Volts
DC Grid-No. 2 Input 1	5 Watts
Plate Dissipation 50	0 Watts
DC Grid-No. 1 Voltage, not pulsed	5 Volts
DC Grid-No. 1 Current, during pulse 2.	5 Amperes
Pulse Width @ (1	5 Microseconds
Duty Factor ♥ Ø 0.001	2

Typical Operation

Grounded-grid Circuit, 500 Megacycles, $1/4\lambda$ Output Circuit	
DC Plate Voltage, during pulse 9	Kilovolts
DC Grid-No. 2 Voltage, during pulse 1400	Volts
DC Grid-No. 1 Voltage, not pulsed	Volts
Peak RF Plate Voltage 7000	Volts
Peak RF Grid Voltage	Volts
DC Plate Current, during pulse 9.2	Amperes
DC Grid-No. 1 Current, during pulse 1.1	Amperes
DC Grid-No. 2 Current, during pulse 0.47	Amperes
Driving Power at Tube, during pulse 2.6	Kilowatts
Power Output, during pulse (useful)	Kilowatts
Pulse Width	Microseconds
Duty Factor	

RADIO-FREQUENCY POWER AMPLIFIER - CLASS C

Maximum Ratings

Pulsed Drive, 1250 Megacyc.	Puised	Acres
-----------------------------	--------	-------

T.U	Ibed Diffe, Theo webacleroo	
	DC Plate Voltage 5	Kilovolts
	DC Plate Current, during pulse 6	Amperes
	DC Grid-No. 2 Voltage 1.1	Kilovolts
	DC Grid-No. 2 Input	Watts
	DC Grid-No. 1 Voltage	Volts
	DC Grid-No. 1 Current	Amperes
	Plate Dissipation 500	Watts
	Pulse Width # 0 15	Microseconds
	Duty Factor # 00 0.01	

Typical Operation

Grounded-grid Circuit at 1100 Megacycles, 3/4^ Output Circuit	
DC Plate Voltage **	Kilovolts
DC Plate Current, during pulse 4.2	Amperes
DC Plate Current, during pulse	Kilovolt
DC Grid-No. 2 Voltage 1	
DC Grid-No. 2 Current, during pulse 100	Milliamperes
DC Grid-No. 1 Voltage	Volts
DC Grid-No. 1 Voltage	Milliamperes
DC Grid-No. 1 Current, during pulse 200	
Driving Power at Tube, during pulse 1.5	Kilowatts
Power Output, during pulse (useful) 11	Kilowatts
Power Output, during pulse (useful)	Contract of Section 14
Power Output, during parce (about), 111 15 Pulse Width	MICroseconds
Duty Factor	
Duly racion	

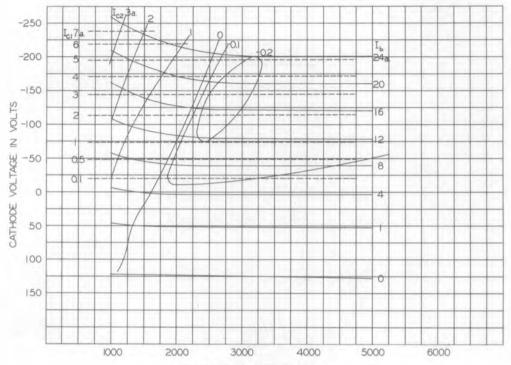
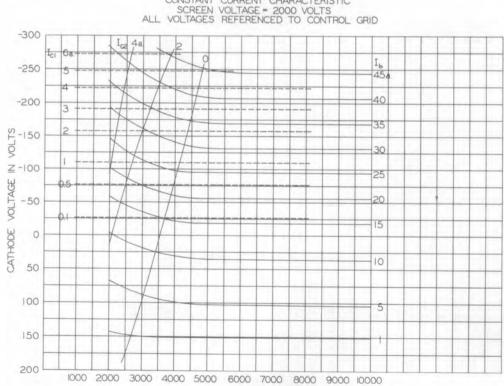
1100 Managerales 2/4) Output Cinquit

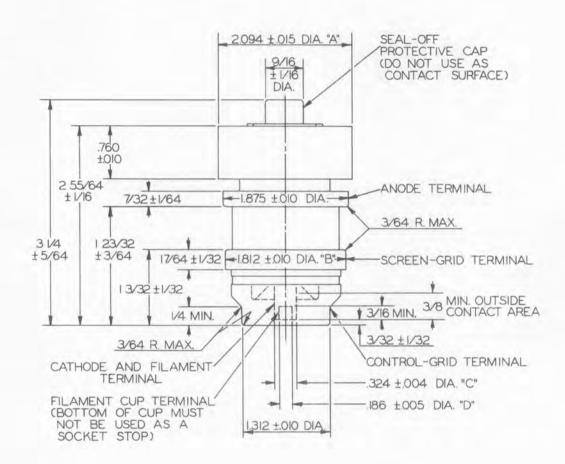
* Control grid connected directly to screen grid.

- ‡ Forced air cooling should be applied during the application of any voltages.
- § Provision must be made for unobstructed passage of cooling air through the radiator fins, and between the anode terminal and adjacent portion of the radiator.
- △ Measured at the base of the radiator and adjacent to the plate terminal.
- Maximum average value.
- For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.
- Pulse duration measured between points at 70 percent of peak value. The peak value is defined as the maximum 0
- value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
- Maximum ratio of on-time to elapsed time during any 12.5-millisecond period. of Maximum ratio of on-time to elapsed time during any 1.5-millisecond period.
- A minimum surge-limiting resistance of 50 ohms must be placed between the plate of the tube and the B+ power ** supply at steady-state voltages greater than 3.5 kilovolts.

ZP-1038 **PTI-162A** Page 3 9-67

CONSTANT CURRENT CHARACTERISTIC SCREEN VOLTAGE = 1000 VOLTS ALL VOLTAGES REFERENCED TO CONTROL GRID


PLATE VOLTAGE IN VOLTS

CONSTANT CURRENT CHARACTERISTIC SCREEN VOLTAGE = 2000 VOLTS VOLTAGES REFERENCED TO CONTROL GRID

PLATE VOLTAGE IN VOLTS

ZP-1038 PTI-162A Page 4 9-67

CONCENTRICITIES:

The following total indicator readings are measured with respect to a centerline determined by the centers of the anode terminal and control grid terminal.

Diameter A - 0.030 inches Diameter B - 0.016 inches Diameter C - 0.036 inches Diameter D - 0.042 inches

Total indicator reading of filament cup terminal diameter (D) measured with respect to center of cathode and filament terminal diameter (C) - 0.016 inches.

TUBE DEPARTMENT

GENERAL COBELECTRIC

This technical information is proprietary and is furnished only as a service to customers.

ZP-1039

VHF-UHF Ring-Seal Construction TETRODE Grounded-Grid Circuit Forced-Air Cooled Metal and Ceramic

The ZP-1039 is a high-performance four-electrode tube for use as an RF power amplifier in grounded-grid circuits with both grids maintained at RF ground potential. This tube features a high-efficiency, axial-flow radiator for minimum forced-air-cooling requirements. The anode is capable of dissipating 5000 watts. The cathode is a unipotential thoriated-tungsten cylinder, heated by electron bombardment. Maximum ratings apply to 800 megacycles, although higher-frequency operation is possible.

As a Class B linear power amplifier the tube will deliver 1500 watts at the carrier level with high power gain and high linearity.

In narrow band, plate-modulated Class C telephony service, the ZP-1039 has a useful carrier power output in excess of 1000 watts. In Class C telegraphy service, it has a useful power output in excess of 3000 watts of continuous power as an RF power amplifier or oscillator.

ELECTRICAL		Minimum	Bogey	Maximum	
Cathode					
Heater Voltage Heater Current at 7.0 Volts	5	-	6.7	7.0	Volts
Without Cathode Bomban	rding	-	14.5	-	Amperes
With 150 Watts Cathode	Bombarding	-	13.5	-	Amperes
Heater Starting Current .		-		25	Amperes
Heater Cold Resistance		-	0.041		Ohms
Cathode Bombarding Power Cathode Bombarding Voltag	r*	-	170	195	Watts
For 170 Watts Bombard		-	650		YT-14-
For 195 Watts Bombard	ing Dower	-	700	-	Volts
Cathode Heating Time	111g 10wei	1	0.7.0	-	Volts
Amplification Factor, G2 to G	• • • • • • • • • • • • • • • • • • •	1	-		Minute
$E_{b} = 4000 \text{ Volts; } I_{b} = 0.5 \text{ s}$	1)		20		
Direct Interelectrode Capacita	ampere	-	20	-	
Cathode to Plate §		-	0.01		
Input, G ₂ tied to G ₁			27.8	-	μμf
Output, G_2 tied to G_1 ¶		-	6.7	-	μμf
output, oz dou to ol a tra		-	0.1	-	μµf
MECHANICAL					
Mounting Position - Vertical, Net Weight, approximate	Anode-end Up			9.5	Pounds
THERMAL					2 Ounus
Type of Cooling - Forced Air Air Flow Through Radiator, at	Sea Level				
Plate Dissipation	Air Flow	Stat	ic Pressu	re	
4.0 Kw	80 CFM		0.9 In.		
5.0 Kw	150 CFM		2.5 In.		
Seals					
Screen-grid to Control-grid	l, minimum			15	Cubic Feet per Minute
Heater-to-cathode, minimu	m			7.5	Cubic Feet per Minute
Anode Ceramic, minimum .	*******			10	Cubic Feet per Minute

The specifications of this type are subject to change. Delivery of samples and the existence of these data do not imply continued availability of types with the same characteristics or dimensions. For the most recent information concerning the status of this device, please consult your local Tube Department Regional Sales Office.

ZP-1039 PTI-163 Page 2 10-65

THERMAL (CONT'D)

Incoming Air Temperature, maximum	25	C
Anode Hub Temperature, maximum	250	С
Temperature of Anode Ceramic and Seals, maximum	250	C
Temperature at Any Other Point, maximum	200	С

Forced-air cooling to be applied before and during the application of any voltages. Air flow on heater-to-cathode seals must be maintained for one minute after removal of heater voltage. The radiator air ducting can be constructed so that air is forced along the anode seal and ceramic through the anode contact fingers and additional holes in the plate contact ring to accomplish the anode ceramic and anode seal cooling. The volume of cooling air indicated for the various seals is approximate only. Distribution of cooling air will vary with configuration of the cavity about the tube.

RADIO-FREQUENCY POWER AMPLIFIER - CLASS B

Carrier Conditions per Tube for Use with a Maximum Modulation Factor of 1.0

Maximum Ratings, Absolute Values

DC Plate Voltage	9000	Volts
DC Grid-No. 2 Voltage		Volts
DC Plate Current	0.800	Ampere
Plate Input	6.0	Kilowatts
Grid-No. 2 Input	25	Watts
Plate Dissipation	5.0	Kilowatts

Typical Operation

Grounded-grid Circuit, 225-400 Megacycles		
DC Plate Voltage	8000	Volts
DC Grid-No. 2 Voltage	750	Volts
DC Grid-No. 1 Voltage, approximate	-50	Volts
DC Plate Current	0.600	Ampere
DC Grid-No. 2 Current	0.010	Ampere
DC Grid-No. 1 Current.	0.060	Ampere
Driving Power, approximate	160	Watts
Driving Power, approximate	200	
Measured at crest of audio-frequency cycle with modulation factor of 1.0	1500	Watts
Power Output #		
Circuit Efficiency	90	Percent
Plate Dissipation	2500	Watts
Cathode Bombarding Power *	170	Watts
Cathode Bombarding Voltage		Volts
Cathode Bombarding Voltage	0.260	Ampere
Cathode Bombarding Current	0.000	

PLATE MODULATED RADIO-FREQUENCY AMPLIFIER - CLASS C TELEPHONY

Carrier Conditions with a Maximum Modulation Factor of 1.0, Screen Modulation Required

Maximum Ratings, Absolute Values

DC Plate Voltage	4500	Volts
DC Grid-No. 2 Voltage	500	Volts
DC Grid-No. 1 Voltage	-120	Volts
DC Plate Current	0.80	Ampere
DC Grid-No. 1 Current	0.120	Ampere
Plate Input	3.60	Kilowatts
Grid-No. 2 Input	25	Watts
Plate Dissipation	5.0	Kilowatts
Plate Dissipation		

PLATE MODULATED RADIO-FREQUENCY AMPLIFIER - CLASS C TELEPHONY (CONT'D)

Carrier Conditions with a Maximum Modulation Factor of 1.0, Screen Modulation Required

Typical Operation

Grounded-grid Circuit at 400 Megacycles

DC Plate Voltage	4000	Volts
DC Grid-No. 2 Voltage	400	Volts
DC Grid-No. 1 Voltage	-100	Volts
Peak RF Plate Voltage	2500	Volts
Peak KF Driving voltage	120	Volts
DC Plate Current	0.570	Ampere
DC Grid-No. 2 Current	0.020	Ampere
DC Grid-No. 1 Current, approximate	0.100	Ampere
Driving Power, approximate	100	Watts
Power Output #	1250	Watts
Output Circuit Efficiency	90	Percent
Cathode Bombarding Power *	165	Watts
Cathode Bombarding Voltage, approximate	630	Volts
Cathode Bombarding Current, approximate	0.260	Ampere

RADIO-FREQUENCY AMPLIFIER AND OSCILLATOR - CLASS C TELEGRAPHY

Key Down Conditions per Tube Without Amplitude Modulation

Maximum Ratings, Absolute Values

DC Plate Voltage	7000	Volts
DC Grid-No. 2 Voltage	750	Volts
DC Plate Current	10	Amperes
Plate Input	6.0	Kilowatts
Grid-No. 2 Input	40	Watts
Plate Dissipation	5.0	Kilowatts
DC Grid-No. 1 Voltage	120	Volts
DC Grid-No. 1 Current	0.150	Ampere

Typical Operation

Grounded-grid Circuit at 400 Megacycles

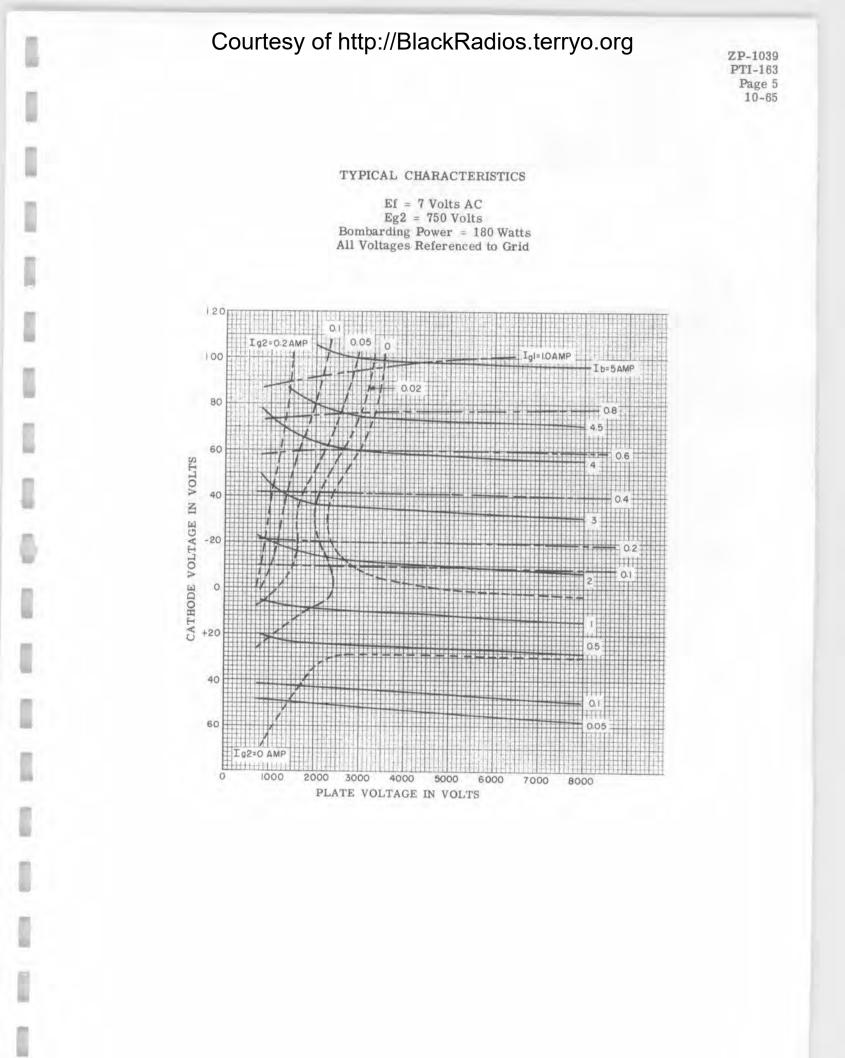
DC Plate Voltage	4500 6500	Volts
DC Grid-No. 2 Voltage	600 700	Volts
DC Grid-No. 1 Voltage	-120 -100	Volts
Peak RF Plate Voltage, approximate	3000 -	Volts
Peak RF Grid-No. 1 Voltage	140 140	Volts
DC Plate Current	0.6 0.8	Ampere
DC Grid-No. 2 Current	.018 0.025	Ampere
DC Grid-No. 1 Current 0.	.080 0.100	Ampere
Driving Power, approximate	100 100	Watts
Power Output, approximate # 1	800 3200	Watts
Output Circuit Efficiency	90 90	Percent
Cathode Bombarding Power *	160 165	Watts
Cathode Bombarding Voltage, approximate	610 630	Volts
Cathode Bombarding Current, approximate0.	.260 0.260	Ampere

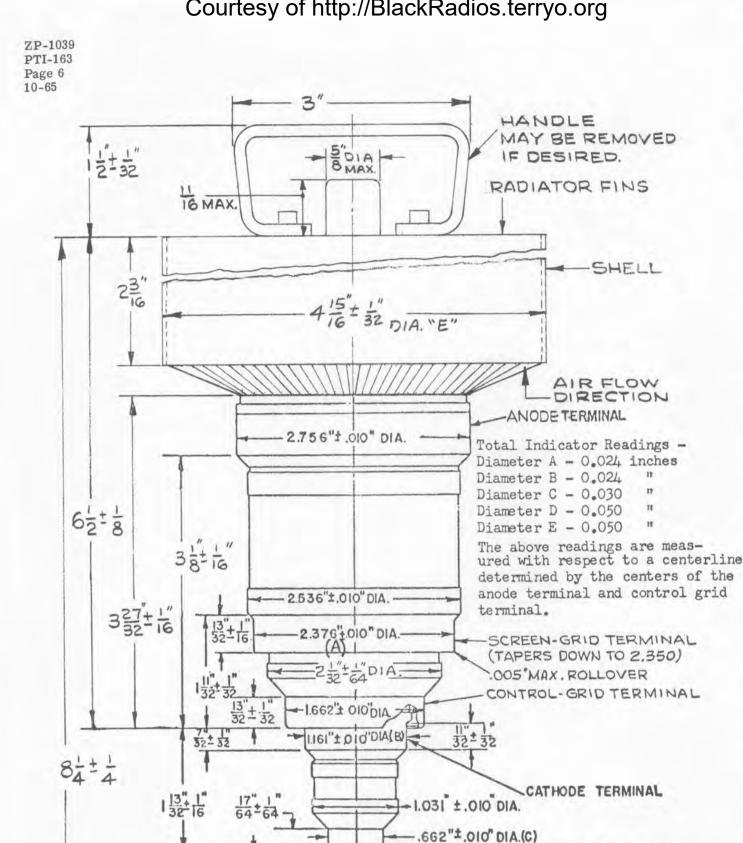
ZP-1039 PTI-163 Page 4 10-65

RADIO-FREQUENCY AMPLIFIER AND OSCILLATOR - CLASS C TELEGRAPHY (CONT'D)

Key Down Conditions per Tube Without Amplitude Modulation

Grounded-grid Circuit at 800 Megacycles


DC Plate Voltage	4500	Volts
DC Grid-No. 2 Voltage	600	Volts
DC Grid-No. 1 Voltage	-120	Volts
Peak RF Plate Voltage, approximate	3000	Volts
Peak RF Grid-No. 1 Voltage	140	Volts
DC Plate Current	0.6	Ampere
DC Grid-No. 2 Current	0.018	Ampere
DC Grid-No. 1 Current	0.080	Ampere
Driving Power, approximate	90	Watts
Power Output, approximate #	1250	Watts
Output Circuit Efficiency	83	Percent
Cathode Bombarding Power *	150	Watts
Cathode Bombarding Voltage, approximate	600	Volts
Cathode Bombarding Current, approximate	0,250	Ampere


* The cathode of the ZP-1039, because of transit-time effects which raise the temperature of the cathode, is subjected to considerable back bombardment in ultra-high-frequency service. The amount of heating due to bombardment is a function of the operating conditions and frequency, and must be compensated for by a reduction of the cathode power input to prevent overheating of the cathode with resulting short life. In any case it is important from a tube life standpoint to keep the cathode power at as low a level as possible consistent with required performance. Bombarder power should be monitored by a suitable wattmeter or DC voltmeter and milliammeter arrangement. For long life, the tube should be put in operation with about 180 watts bombarding power. After the circuit has been adjusted for proper tube operation, bombarding voltage should be reduced to a value slightly above that at which circuit performance is affected. Minor circuit readjustment may be necessary after the above adjustment. The procedure for determining proper bombarding power should be repeated periodically.

§ Measured with complete isolation between cathode and plate.

¶ Output capacitance measured between anode and screen grid. Control grid connected directly to screen grid.

Useful power output including power transferred from driver stage.

A-69087-72B120 (12-2-64)

3" +16

FILAMENT TERMINALS

250"1.008"DIA.(D)

SHELL

11 п

11

Courtesy of http://BlackRadios.terryo.org OBJECTIVE GENERAL 🏵 ELECTRIC

TECHNICAL INFORMATION

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office.

DEVELOPMENTAL TYPE

> ZP-1043 OTI-90A Page 1 2 - 65

This technical information is proprietary and is furnished only as a service to customers

ZP-1043

TRIODE

Grid-Pulsed Amplifier Service Grounded-Grid Operation

Heat-Sink and Forced-Air Cooled Metal and Ceramic

The ZP-1043 is a heat-sink-cooled triode especially designed for grid-pulsed amplifier service in L-band. This tube is particularly well suited for use in navigational aid application. Features include small size, long pulse width and high duty capability, long life and reliability.

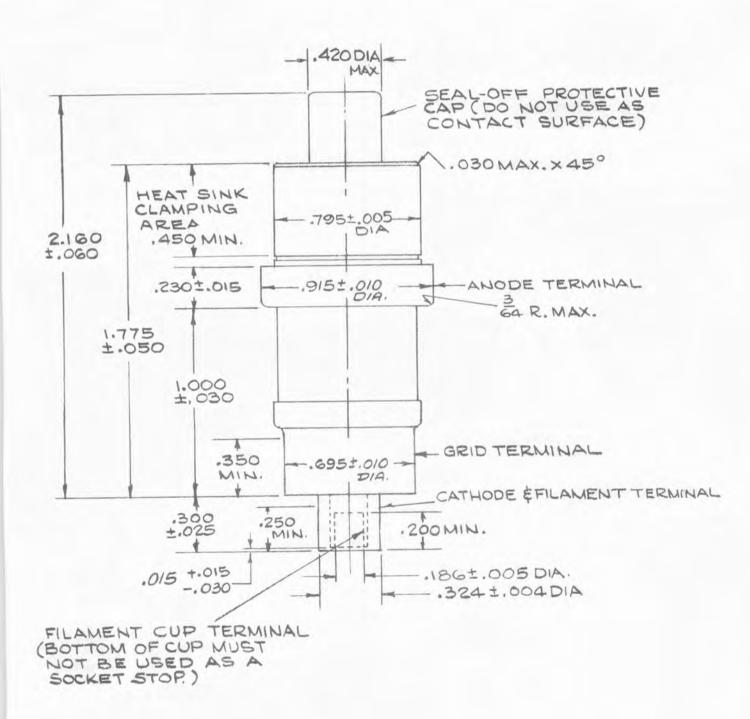
ELECTRICAL

TUBE DEPARTMENT

Schenectady 5, N.Y.

Heater Voltage* Heater Current Cathode Heating Time, minimum Direct Interelectrode Capacitances Input Output Plate-Cathode .	. 2.4 . 1 . 16.5	Volts Amperes Minute μμf μμf μμf
MECHANICAL	. 0.1	hthe I
Mounting Position – Any Net Weight, approximately THERMAI.	2-1/2	Ounces
Cooling – Heat-sink or Forced air Maximum Anode Temperature § Maximum Ceramic Temperature at Any Point	250 200	C
GRID-PULSED AMPLIFIER - CLASS C	200	C
Maximum Ratings DC Plate Voltage . DC Plate Current, during pulse DC Grid Voltage . Plate Dissipation . Pulse Width ¶ Duty Factor ض .	3.0 -200 50	Kilovolts Amperes Volts Watts Microseconds
Typical Operation Grounded-Grid Circuit at 1150 mcs, $1/4 \lambda$ Output2000DC Plate Voltage2000DC Plate Current, during pulse1.1DC Grid Voltage-80DC Grid Current, during pulse0.35Power Output, during pulse (useful)1000Drive Power, during pulse200Pulse Width \Diamond 10Duty Factor0.01	2000 2.25 -80 0.75 2000 350 10 0.004	Volts Amperes Volts Amperes Watts Watts Microseconds
* Because of back-heating due to transit time offente. It		

Because of back-heating due to transit time effects, it may be necessary to reduce the heater voltage. 5


A suitable heat-sink clamping arrangement must be provided to limit the anode hub temperature to the value d

Maximum ratio of on-time to elapsed time during any 250 microsecond period. 0

Pulse duration is measured between points at 70 percent of the peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse. For recommendations on longer pulse width and higher duty factor refer to the manufacturer. T

The specifications of this type are subject to change. This device is now under development and is made available for experimental purposes only. For the most

ZP-1043 OTI-90A Page 2 2-65

PRELIMINARY TECHNICAL INFORMATION

TUBES

INNOVATIONS

IN ACTION

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings. DEVELOPMENTAL TYPE

> ZP-1044 PTI-149B Page 1 9-67

This technical information is proprietary and is furnished only as a service to customers. ZP-1044

TETRODE

Internal Feedback for CW Oscillator Service Grounded-Grid Operation

Forced-Air Cooled Metal and Ceramic

The ZP-1044 is a forced-air cooled power tetrode especially designed for CW oscillator service through approximately 1250 megacycles. This tube is particularly well suited for use in special applications such as a high level RF power source operating over the range of 200 to 1000 megacycles.

The tube features internal feedback which eliminates the need for the complicated external circuit arrangements normally required in oscillator service. This special feature greatly simplifies cavity design, construction, and operation, particularly where very broad frequency coverage is required.

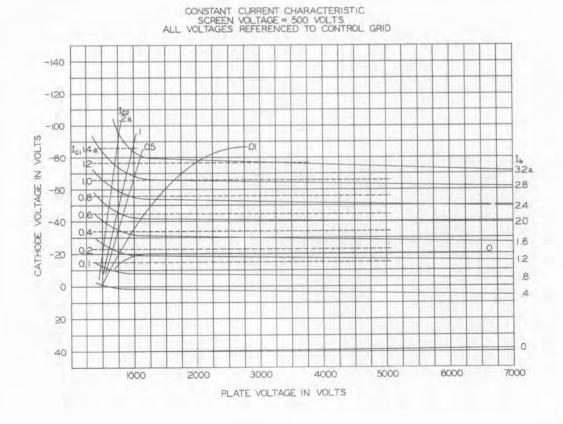
Other features include metal and ceramic construction, an integral radiator capable of dissipating 1500 watts and an indirectly heated thoriated tungsten cathode.

ELECTRICAL	Minimum	Bogey	Maximum	
Heater Voltage*	22	5.7 24	6.0 26	Volts Amperes
Heater Starting Current		-	36	Amperes
Heater Cold Resistance		0.02	-	Ohms
Cathode Heating Time Direct Interelectrode Capacitances	. 1	2	-	Minutes
Input, G ₂ tied to G_1		17.0	-	μµf
Output, G_2 tied to G_1 §		5,5	-	μµf
MECHANICAL				
Mounting Position			3.6	Any Pounds
THERMAL				
Air Flow¶ Through Radiator, at Sea Level Plate Dissipation	re, Minimum	••••••	60 Min 1.5 8 Min 4 Min 6 Min 180 Max	Cubic Feet per Minute Inches-Water Cubic Feet per Minute Cubic Feet per Minute Cubic Feet per Minute C
Maximum Ratings, Absolute Values				
DC Plate Voltage			4000 Max	Volts

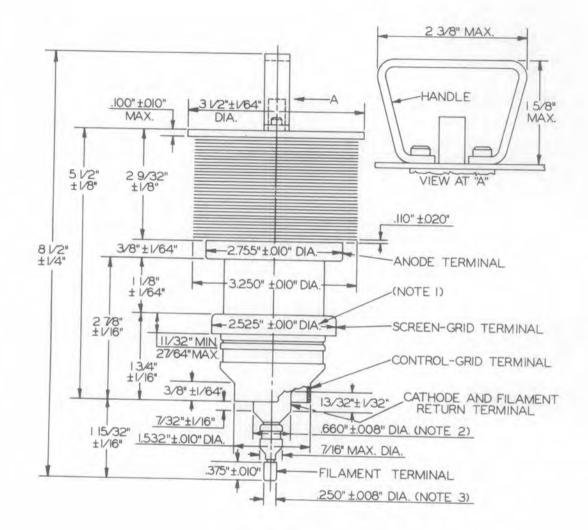
The specifications of this type are subject to change. This device is now under development and is made available for experimental purposes only. For the most recent information concerning the status of this development, please consult your local Power Tube Department Regional Sales Office, or current Preliminary Tech-

ZP-1044 PTI-149B Page 2 9-67

CW RADIO-FREQUENCY OSCILLATOR - CLASS C (CONT'D)


Maximum Ratings, Absolute Values (Cont'd)

DC Plate Current	 	 	 		 		 	1	4		 2	2	2.3	 ÷			0.7 Max	Amperes
DC Grid-No. 1 Current		 					 			ς.					2		0.10 Max	Amperes
Plate Input		 	0						1		1						2.5 Max	Kilowatts
Grid-No. 2 Input						2	 										25 Max	Watts
Plate Dissipation	 	 		 					ï								1,5 Max	Kilowatts


Typical Operation - Grounded-Grid Circuit up to 1000 Megacycles

DC Plate Voltage	Volts
DC Grid-No. 2 Voltage 500	Volts
DC Grid-No. 1 Voltage	Volts
DC Plate Current 0.500	Amperes
DC Grid-No. 2 Current	Amperes
DC Grid-No. 1 Current, approximate	Amperes
Power Output, approximate (useful) 1100	Watts

- * Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater voltage reduction is dependent on operating conditions.
- § Output capacitance measured between anode and screen grid. Control grid connected directly to screen grid.
- [¶] The volume of cooling air indicated for the various seals is approximate only. Distribution of cooling air will vary with the cavity configuration about the tube. For most satisfactory operation the maximum temperature of any point on the tube should be below 200 C. Cooling is to be provided before and during the application of any voltages.

ZP-1044 PTI-149B Page 3 9-67

Total Indicator Readings

Note 1: 0.020 in. Note 2: 0.030 in. Note 3: 0.060 in.

The above readings are measured with respect to a centerline determined by the centers of the anode terminal and control-grid terminal.

These ratings represent the design objective for this product. Refer to the Preliminary Technical Information sheet for ratings currently achieved in the progression towards design objectives. If PTI sheets do not exist, consult your local Tube Department Regional Sales Office. DEVELOPMENTAL TYPE

> ZP-1057 OTI-92 Page 1 2-65

This technical information is proprietary and is furnished only as a service to customers ZP-1057 TRIODE

Internal Feedback for CW Oscillator Service Grounded-Grid Operation

GENERAL (%)

FT FOTTOTOT

TUBE DEPARTMENT

Schenectady 5, N. Y.

Forced-Air Cooled Metal and Ceramic

The ZP-1057 is a forced-air cooled triode especially designed for CW oscillator service through approximately 2000 megacycles. This tube is particularly well suited for use in special applications such as high level microwave signal generators operating over an extremely wide frequency range.

The tube features internal feedback which eliminates the need for the complicated external circuit arrangements normally required in oscillator service. This special feature greatly simplifies cavity design, construction and operation, particularly where very broad frequency coverage is required.

Other features include small size metal and ceramic construction, a high efficiency radiator, and an oxide-coated cathode with inherent long life.

ELECTRICAL	Minimum	Bogey	Maximu	m
Heater Voltage* Heater Current Cathode Heating Time Direct Interelectrode Capacitances	- 3.5 1	6.3 3.8 -	4.0	Volts Amperes Minute
Input	-	15.5	-	Juli
Output		6.5	-	unt
MECHANICAL				
Mounting Position - Any Net Weight, approximately			5 3/4	Ounces
Cooling - Forced Air Through Radiator, at Sea Level Plate Dissipation Air Flow, 45 C Incoming Air Temperat	ure,		300	Watts
minimum			7	Cubic Feet per Minute
Static Pressure, approximate Radiator Hub Temperature, at Point			0.7	Inches-Water
Adjacent to Anode Seal?			250	C
Coramic Temperature at Any Point, maxim	um		200	C

The specifications of this type are subject to change. This device is now under development and is made available for experimental purposes only. For the most recent information concerning the status of this development, please consult your local Tube Department Regional Sales Office, or current Preliminary Technical Information for the same catalog number. ET-J37

ZP-1057 OTI-92 Page 2 2-65

CW RADIO-FREQUENCY OSCILLATOR - CLASS C

Maximum Ratings

DC Plate Voltage	1750	Volts
DC Plate Current		Amperes
DC Grid Voltage		Volts
DC Grid Current		Amperes
Plate Dissipation	300	Watts

Typical Operation

Grounded-Grid Circuit at 1200 Megacycles, 3/42 Output

DC Plate Voltage		Volts	
DC Plate Current	0.275	Amperes	
DC Grid Voltage		Volts	
DC Grid Current	0.045	Amperes	
Power Output, approximate (useful)	200	Watts	
Toket sett to the test of			

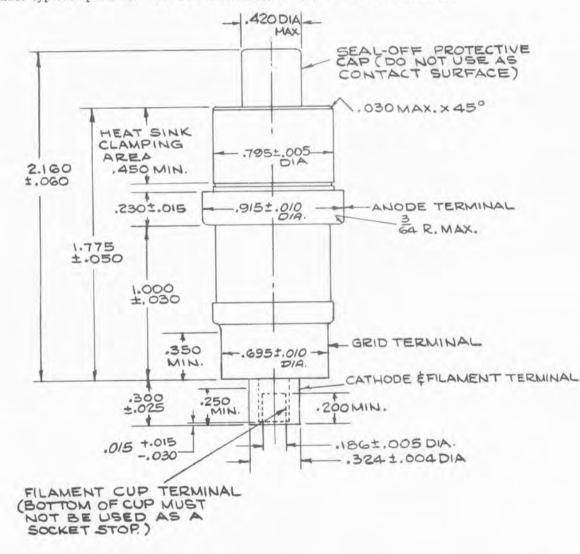
- * Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.
- Forced-air cooling to be provided before and during the application of any voltages to limit the anode hub temperature to the value specified.

A-69087-72B116

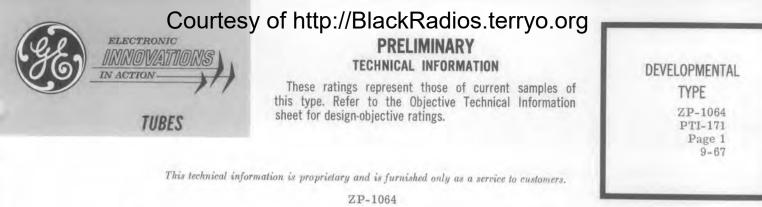
Courtesv	of http://Blac	kRadios ter	rvo ora	
GENERAL 🋞 ELECTRIC		PRELIMINARY CHNICAL INFORMATIO		DEVELOPMENTAL
TUBE DEPARTMENT Schenectady 5, N. Y.	These ratings this type. Refer sheet for design-o	represent those of cur to the Objective Tech bjective ratings.	rent samples of nical Information	TYPE ZP-1061 PTI-161 Page 1 2-65
This technical info	ormation is proprietary and	is furnished only as a serv	ice to customers.	
	ZP-	1061		
Internal Feedback for Oscillator Ser Grid-Pulsed or Plate-Pulsed Operat	vice TRIC ion	DDE		etal and Ceramic
The ZP-1061 is a heat-sink-coo. The tube is particularly well suited f	led triode especially for use in navigation:	designed for grid- al aid applications.	pulsed oscillator se	rvice in L-band.
The ZP-1061 features all neces complicated external-circuit arrange	ssary feedback with ements normally req	in the tube envelope uired in oscillator s	e, which eliminates ervice.	the need for the
Other features include small siz				liability.
ELECTRICAL		and the second second		and a start y .
Heater Voltage* Heater Current Cathode Heating Time, minimum Direct Interelectrode Capacitanc	es	************	2.5 1	Amperes Minute
Input	• • • • • • • • • • • • • • • • • • • •	************	17.0 4.0	µµf µµf
MECHANICAL				
Mounting Position - Any				
Net Weight, approximate				Ounces
THERMAL				
Cooling - Heat-sink or Forced A	ir			
Maximum Anode Temperature #			250	C
Maximum Ceramic Temperature	at Any Point			C
GRID-PULSED OSCILLATOR - CLA				
Maximum Ratings	100 0 11			
DC Plate Voltage			2.5	Kilovolts
Do and our ent, during pu	ISC		0.0	Amperes
So GAIG FOILIGE			000	Volts
Plate Dissipation			50	Watts
Duty Factor ø &				Microseconds
Typical Operation				
Grounded-Grid Circuit at 1090 me DC Plate Voltage	cs, $1/4 \lambda$ Output			
DC Plate Voltage DC Plate Current, during pul DC Grid Voltage	se		1 77	Volts
	and a second state of the			Amperes
	50.			Volts Amperes
auput, during puise il	iselull .		1000	Watts
Pulse Width ¢	*************		0.5	Microseconds

Watts Wicroseconds

The specifications of this type are subject to change. Delivery of samples and the existence of these data do not imply continued availability of types with the same characteristics or dimensions. For the most recent information concerning the status of this device, please consult your local Tube Department Regional Sales Office.


Duty Factor

.


ZP-1061 PTI-161 Page 2 2-65

* Because of back-heating due to transit time effects, it may be necessary to reduce the heater voltage.

- #A suitable heat-sink clamping arrangement must be provided to limit the anode hub temperature to the value specified.
- & Maximum ratio of on-time to elapsed time during any 250 microsecond period.
- ¢ Pulse duration is measured between points at 70 percent of the peak value. The peak value is defined at the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
- & For recommendations on longer pulse width and higher duty factor refer to the manufacturer.
- ** Plate-pulsed oscillator operation may be used for considerably higher peak power output than that indicated under typical operation. For recommendations refer to the manufacturer.

A-69087-72B107

TETRODE

VHF-UHF Metal Ceramic Tetrode

4 Kilowatts Useful CW Output

750 Watts Class B Linear Output

Integral Radiator Thoriated-Tungsten Cathode vers useful output to approximately 1250 megacycles

Forced Air Cooled

The ZP-1064 is a forced-air cooled power tetrode that delivers useful output to approximately 1250 megacycles. This tube is particularly suitable for application as an AM or FM power amplifier in the final output or driver stage of VHF-UHF military communications systems.

The tube features high power gain, as much as 14 db, while delivering up to 4000 watts of useful CW power as a grounded-grid Class C amplifier at 400 megacycles. An output capacitance of only 6.0 $\mu\mu$ f, which is significantly low for a tube of its power handling capability, makes the ZP-1064 well suited for application in equipments requiring broad electronic bandwidth.

Other features include metal-ceramic construction, a high efficiency axial flow radiator capable of dissipating 2750 watts, and an indirectly heated thoriated tungsten cathode.

GENERAL

Electrical		Minimum	Bogey	Maximum	
Heater Voltage * Heater Current at 5.7 Volts . Heater Starting Current Heater Cold Resistance Cathode Heating Time . Amplification Factor, G ₂ to G ₁ Eb = 2000 Volts, I _b = 0.200 Ampere, E _c 2	· · · · · · · · · · · · · · · · · · ·	22 1 12	5.7 24 0.02	26 36 22	Volts Amperes Amperes Ohms Minute
Direct Interelectrode Capacitances Cathode to Plate ‡ Input, G ₂ tied to G ₁ Output, G ₂ tied to G ₁ §		15,5	17.0 6.0	0,006 18.5	μuf μμf μuf
Mechanical					
Mounting Position				. 5.0	Vertical Pounds
Thermal					
Cooling-Forced Air ¶ Through Radiator, at Sea Level					
Plate Dissipation	Air Flow			Static Pres	sure
2.75 Kilowatts 2.0 Kilowatts 1.5 Kilowatts	140 Min CFM 90 Min CFM 55 Min CFM			0.8 In	ches Water ches Water ches Water
Seals Screen-Grid to Control-Grid Heater-to-Cathode . Anode to Screen-Grid Ceramic Insulator Incoming Air Temperature Radiator Hub Temperature (Adjacent to Anode Temperature at Any Other Point	Seal).	· · · · · · · · · · ·	0 0 8 8 8 8 A 8 0 0 0 0 0 0 8 8 0 0 0 0 8 8 8 8 0 0 8 8 8 8 0 0 0 8 8 8 8 0		4 Min CFM 8 Min CFM 6 Min CFM 25 Max C 180 Max C 200 Max C
Forced-air cooling to be applied before and du ned for one minute after the removal of all volta	uring the application of any v	voltages. Fo	orced-air	cooling mu	st be main-

tained for one minute after the removal of all voltages.

The specifications of this type are subject to change. This device is now under development and is made available for experimental purposes only. For the most recent information concerning the status of this development, please consult your local Power Tube Department Regional Sales Office, or current Preliminary Tech-

ZP-1064 PTI-171 Page 2 9-67

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR - CLASS C

Maximum Ratings, Absolute Values	420 mcs	1000 mcs
DC Plate Voltage	8000	6000 Max Volts
DC Grid-No. 2 Voltage	650	650 Max Volts
DC Grid-No. 1 Voltage	-175	-175 Max Volts
DC Plate Current.	0.700	0.700 Max Amperes
DC Grid-No. 1 Current	0.175	0.175 Max Amperes
Plate Input	5.6	4.2 Max Kilowatts
Grid-No. 2 Input	25	25 Max Watts
Plate Dissipation	2.75	2.75 Max Kilowatts

Typical Operation - Grounded-Grid Circuit @ 400 mcs

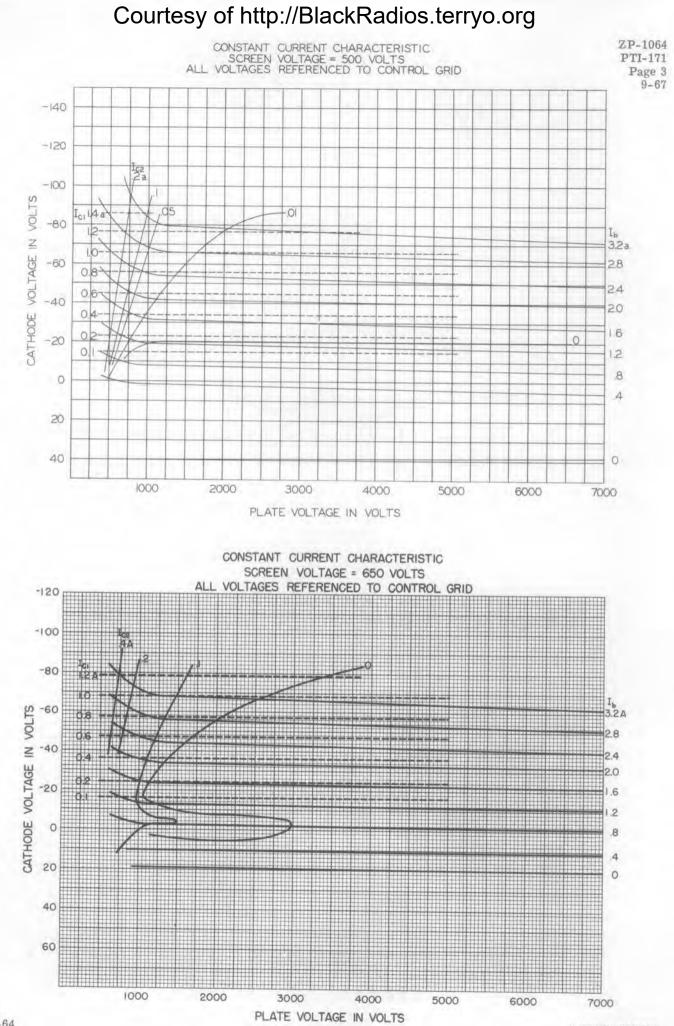
DC Plate Voltage	5500	7500	Volts
DC Grid-No. 2 Voltage	600	600	Volts
DC Grid-No. 1 Voltage	-100	-100	Volts
DC Plate Current.	0.450	0.650	Amperes
DC Grid-No. 2 Current	0.012	0.016	Amperes
DC Grid-No. 1 Current	0.085	0.155	Amperes
Driving Power, approx	90	150	Watts
Power Output, useful Ø	2000	4000	Watts
Power Gain, approx	13.5	14.3	db

RADIO FREQUENCY POWER AMPLIFIER - CLASS B LINEAR SERVICE

Maximum Ratings at 420 Megacycles, Absolute Values

DC Plate Voltage	8000 Max Volts
DC Grid-No. 2 Voltage	650 Max Volts
DC Plate Current.	585 Max Milliamperes
Plate Input	4150 Max Watts
Grid-No. 2 Input	16 Max Watts
Plate Dissipation	2750 Max Watts

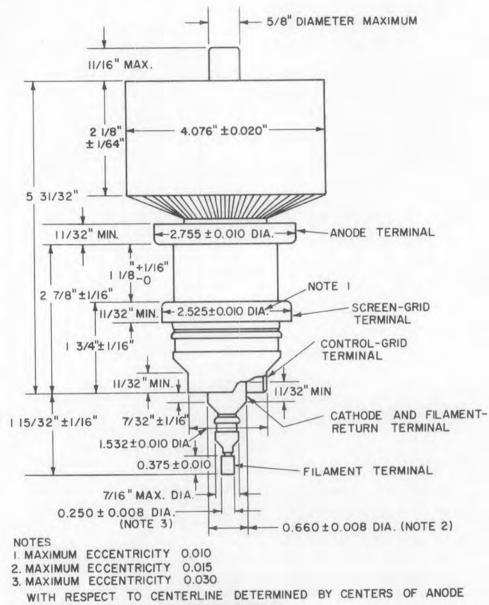
Typical Operation at 400 Mcs, Carrier Conditions for Maximum Modulation Factor of 1.0


	7500	Volts
DC Plate Voltage	600	Volts
DC Grid-No. 2 Voltage		
DC Grid-No. 1 Voltage, approx	- 50	Volts
De Glid-No. 1 voltage, approximination	330	Milliamperes
DC Plate Current	5	Milliamperes
DC Grid-No. 2 Current		ale and a set of a
DC Grid-No. 1 Current	30	Milliamperes
De Griu-Ro. I cultent	17.5	Watts
Driving Power, approx	750	Watts
Power Output, useful Ø		
The state of the s	16	db
Power Gain, approx		

*Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater voltage reduction is dependent on operating conditions.

‡ Measured with complete external shielding between cathode and anode.

§ Output capacitance measured between anode and screen grid. Control grid connected directly to screen grid.


- The volume of cooling air indicated for the various seals is for sea-level conditions and approximate only. Distribution of cooling air will vary with the cavity configuration about the tube. For most satisfactory operation the maximum temperature of any point on the tube should be below specified limits.
- ØUseful power output including power transferred from driver stage.

12-64

A-69087-72B121

ZP-1064 PTI-171 Page 4 9-67

TERMINAL AND CONTROL-GRID TERMINAL

TUBE DEPARTMENT

GENERAL 🍪 ELECTRIC

Schenectady, N. Y. 12305

PRELIMINARY TECHNICAL INFORMATION

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings. DEVELOPMENTAL TYPE

Forced-Air Cooled

Metal and Ceramic

ZP-1065 PTI-165A Page 1 9-67

This technical information is proprietary and is furnished only as a service to customers.

ZP-1065

TETRODE

Grid-Pulsed Service Grounded-Grid Operation

ELECTRONIC

IN ACTION

INNOVATIONS

TUBES

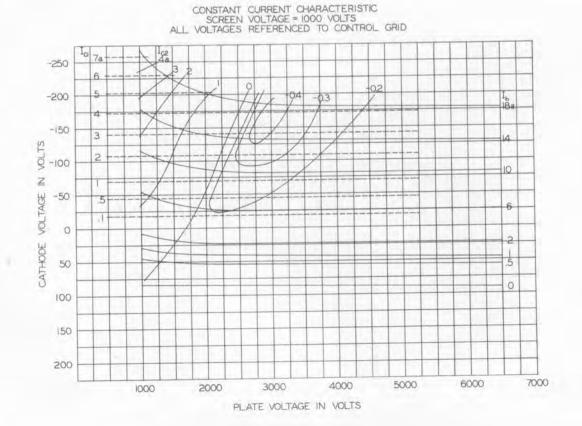
The ZP-1065 is a high-performance, forced-air cooled, metal-ceramic tetrode especially designed for gridpulsed amplifier service (pulsed RF drive only) at L-band frequencies. This tetrode is particularly well suited for use in radar equipment such as advanced ground-based, ship-board or airborne IFF interrogators. It is capable of providing useful output at frequencies up to approximately 1500 megacycles.

Features of the ZP-1065 include long life and reliability, high gain with pulsed RF drive only, long pulse width, and high-duty capability.

ELECTRICAL	Minimum	Bogey	Maximum	
Heater Voltage*	-	6.3 3.8	1	Volts
Cathode Heating Time Direct Interelectrode Capacitances**	1	-	-	Amperes Minute
Cathode to Plate †	-	0.006	-	μμf
Input	-	20 7.5	5	uuf uuf
MECHANICAL				
Mounting Position				Any 13 Ounces
THERMAL				
Cooling - Forced-Air‡ Through Radiator, at Sea Level				
Plate Dissipation	um	. 9	400 4.5 0.2	Watts Cubic Feet per Minute Inches Water
Radiator Hub Temperature at Point Adjacent to Anode Se maximum§	eal.		250	Ċ
Seals				C
Screen and Control Grid, approximate			1	Cubic Feet per Minute Cubic Feet per Minute C
RADIO-FREQUENCY POWER AMPLIFIER				
Maximum Ratings				
Pulsed Drive, 1250 Megacycles				
DC Plate Voltage DC Plate Current, during pulse	*******	******	5	Kilovolts Amperes
DC Grid-No. 2 Voltage			1	Kilovolt
DC Grid-No. 2 Input			5	Watts
DC Grid-No. 1 Voltage			200	Volts
Plate Dissipation	*******		. 600	Watts
Pulse Width \Diamond Duty Factor ϕ	• • • • • • • • • • •		. 10	Microseconds

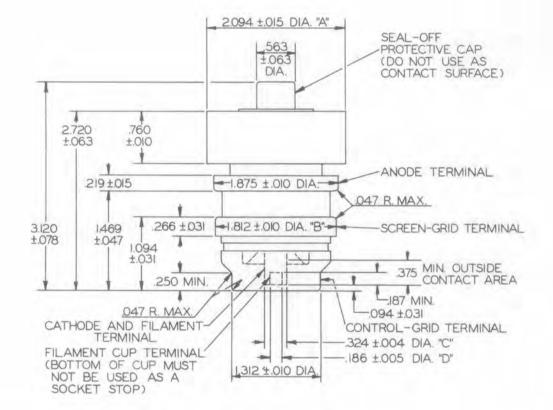
The specifications of this type are subject to change. This device is now under development and is made available for experimental purposes only. For the most recent information concerning the status of this development, please consult your local Power Tube Department Regional Sales Office, or current Preliminary Technical Information for the same catalog number.

RADIO-FREQUENCY POWER AMPLIFIER (CONT'D)


Typical Operation

Grounded-Grid Service at 1030 Megacycles, 1/4) Output Circuit DC Plate Voltage ØØ	4.5	3.5	Kilovolts	
DC Plate Current, during pulse	5.3	3.0	Amperes	
DC Grid-No. 2 Voltage	750	750	Volts	
DC Grid-No. 2 Current, during pulse	0.110	0.065	Amperes	
DC Grid-No. 1 Voltage, approximate	-115	-75	Volts	
DC Grid-No. 1 Current, during pulse	0.850	0.400	Amperes	
Driving Power at the Tube, during pulse	1.5	0.5	Kilowatts	
Power Output, during pulse (useful)	11.0	4.5	Kilowatts	
Pulse Width	10	10	Microseconds	
Duty Factor	0.01	0.03		

* Under the typical operating conditions shown the filament voltage should be reduced to approximately 6.0 volts because of back-heating resulting from transit time effects.


** Control grid connected directly to screen grid.

- † Complete external shielding between cathode and plate.
- ‡ Forced-air cooling should be applied during the application of any voltages.
- § Provision must be made for unobstructed passage of cooling air to limit the anode hub temperature to the value specified.
- Pulse duration is measured between points at 70 percent of the peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
- Ø Maximum ratio of on-time to elapsed time during any 1-millisecond period. Higher duty may be allowed with lower tube input as indicated under typical operation at 0.03 duty. For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations.
- \$\u00f8 A minimum surge-limiting resistance of 50 ohms must be placed between the plate of the tube and the B+ power supply at steady-state voltages greater than 3.5 kilovolts.

ZP-1065 PTI-165A Page 3 9-67

CONCENTRICITIES:

þ

The following total indicator readings are measured with respect to a centerline determined by the centers of the anode terminal and control grid terminal.

Diameter A - 0.030 inches Diameter B - 0.016 inches Diameter C - 0.036 inches Diameter D - 0.042 inches

Total indicator reading of filament cup terminal diameter (D) measured with respect to center of cathode and filament terminal diameter (C) - 0.016 inches.

Courtesy of http://BlackRadios.terryo.org GENERAL & ELECTRIC POWER TUBE DEPARTMENT Schenectady 5, N. Y. DEVELOPMENTAL These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings. DEVELOPMENTAL TYPE ZP-1070 DEVELOPMENTAL

PTI-164 Page 1 10-65

This technical information is proprietary and is furnished only as a service to customers.

ZP-1070

TETRODE

Radio-Frequency Amplifier CW Service Grounded-Grid Operation

Forced-Air Cooled Metal and Ceramic Integral Radiator

The ZP-1070 is a reliable power tetrode that delivers useful output to 1250 megacycles or higher. This tube is particularly suitable for application in the final output or driver stage of military-communications systems.

As a Class B linear amplifier in the 225-400-megacycle range, the tube will deliver 110 watts of carrier power modulated up to 100 percent. Since a power gain of 20 may be realized, drive requirements are low – approximately 5 watts at carrier level.

Operating as a Class C CW amplifier at 900 megacycles, the gain is approximately 15 at the 200-watt level.

Features of the ZP-1070 include long life and reliability, high gain, high linearity, and resistance to shock and vibration.

These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where performance and reliability are important.

ELECTRICAL	Minimum	Bogey	Maximum	
Heater Voltage *	-	6.3	6.8	Volts
Heater Current	-	3.8	-	Amperes
Cathode Heating Time Amplification Factor, G ₂ to G ₁ , E _b = 1000 Volts DC:	1	-	-	Minutes
$E_g^{2=275}$ Volts DC; $I_b = 0.2 \text{ A DC}$ Direct Interelectrode Capacitances		14	-	
Cathode to Plate ‡	-	0.006	-	μµf
Input, G_2 tied to G_1	2	20		μμf
Output, \tilde{G}_2 tied to $\hat{G}_1 \Diamond \ldots \ldots \ldots \ldots$	-	7.5	-	μμſ
MECHANICAL				
Mounting Position - Any Net Weight, approximate			13	Ounces
THERMAL				
Cooling - Forced Air §				
Through Radiator, at Sea Level **				
Plate Dissipation	600	400		Watts
minimum	9	4.5		Cubic Feet per Minute
Static Pressure, approximate Radiator Hub Temperature at Point Adjacent to	0.5	0.2		Inches-Water
Anode Seal	-	-	250	C

The specifications of this type are subject to change. Delivery of samples and the existence of these data do not imply continued availability of types with the same characteristics or dimensions. For the most recent information concerning the status of this device, please consult your local Power Tube Department Regional Sales Office.

ZP-1070 PTI-164 Page 2 10-65

THERMAL (CONT'D)

Seals

Screen-Grid to Control-Grid, approximate	-	-	1	Cubic Foot per Minute
			1	Cubic Foot per Minute
Heater to Cathode, approximate	-	-	1	Cubic root per minute
Ceramic Temperature at Any Point, maximum	-	-	200	C

RADIO-FREQUENCY POWER AMPLIFIER - CLASS B LINEAR

Carrier conditions per tube for use with a maximum modulation factor of 1.0

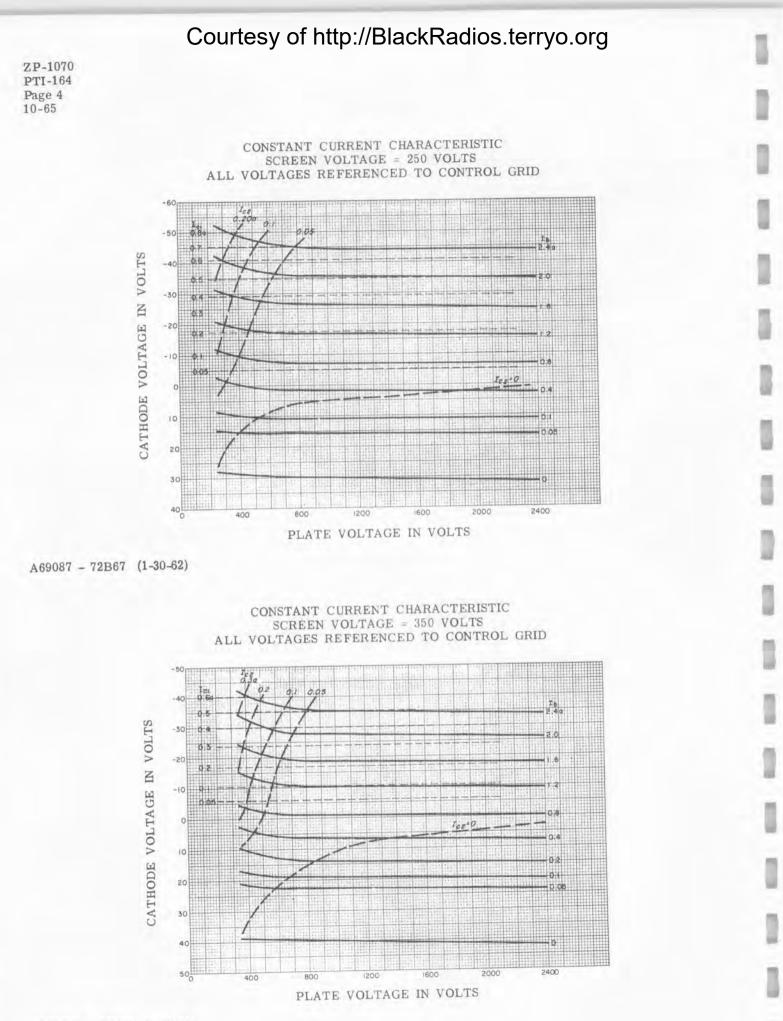
Maximum Ratings

DC Plate Voltage	2000	Volts
DC Grid-No. 2 Voltage	320	Volts
DC Plate Current	0.250	Ampere
Plate Input	500	Watts
Grid-No. 2 Input.	5	Watts
Plate Dissipation	600	Watts

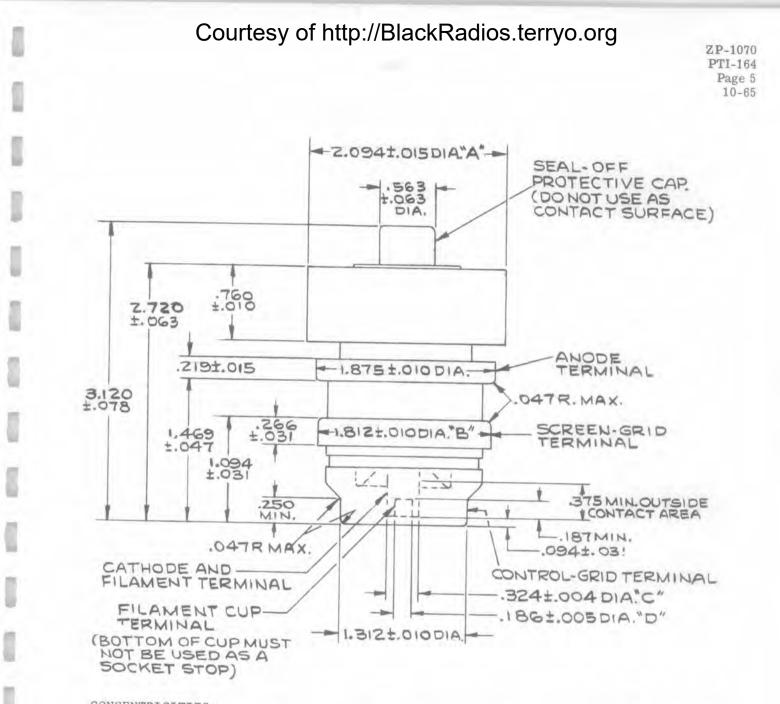
Typical Operation

Grounded-Grid Circuit at 225-400 Megacycles

DC Plate Voltage	1750	Volts
DC Grid-No. 2 Voltage	250	Volts
DC Grid-No. 1 Voltage, approximate	-20	Volts
Peak RF Plate Voltage #, approximate	1250	Volts
Peak RF Grid-No. 1 Voltage #, approximate	40	Volts
DC Plate Current	0.200	Ampere
Zero Signal DC Plate Current (E_{cl} adjusted)	0.020	Ampere
DC Grid-No. 2 Current	0.005	Ampere
DC Grid-No. 1 Current.	0.010	Ampere
Driving Power, approximate	5	Watts
Driving Power, approximate	110	Watts
Power Output♥		


RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR - CLASS C TELEGRAPHY

Key-down conditions per tube without amplitude modulation Δ


Maximum Ratings DC Plate Voltage DC Grid-No. 2 Voltage DC Grid-No. 1 Voltage DC Plate Current DC Grid-No. 1 Current DC Grid-No. 2 Input Grid-No. 1 Dissipation Grid-No. 1 Dissipation	900 Megacycles 1600 320 -100 0.300 0.050 480 15 600 2	400 Megacycles 2000 320 -100 0.300 0.050 600 15 600 2	Volts Volts Ampere Ampere Watts Watts Watts Watts Watts
Grounded-Grid Circuit at 900 Megacycles DC Plate Voltage DC Grid-No. 2 Voltage DC Grid-No. 1 Voltage DC Plate Current DC Grid-No. 2 Current, approximate DC Grid-No. 1 Current, approximate Driving Power, approximate Power Output, approximate ¶	$1500 \\ 210 \\ -40 \\ 0.300 \\ 0.010 \\ 0.020 \\ 14 \\ 205$	$\begin{array}{c} 2000\\ 225\\ -40\\ 0.250\\ 0.010\\ 0.020\\ 15\\ 300 \end{array}$	Volts Volts Volts Ampere Ampere Watts Watts

ZP-1070 PTI-164 Page 3 10-65

- * Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater-voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.
- [‡] Measured with a 6-inch minimum diameter flat metal disk attached to the screen-grid ring. Control grid connected to the screen grid.
- Output capacitances measured between anode and screen grid. Control grid connected directly to screen grid.
- § Forced-air cooling to be applied before and during the application of any voltages.
- ** Provision must be made for unobstructed passage of cooling air between radiator fins and between the anode terminal and adjacent radiator fin.
- Vseful power output as measured in output-circuit load.
- ¶ Useful power output including power transferred from driver stage. Output circuit efficiency approximately 80 percent.
- AModulation essentially negative may be used if the positive peak of the envelope does not exceed 115 percent of the carrier conditions.
- # Measured at the crest of the audio-frequency cycle with a modulation factor of 1.0.

A69087 - 72B68 (1-30-63)

CONCENTRICITIES:

The following total indicator readings are measured with respect to a centerline determined by the centers of the anode terminal and control grid terminal.

Diameter A - 0.030 inches Diameter B - 0.016 inches Diameter C - 0.036 inches Diameter D - 0.042 inches

Total indicator reading of filament cup terminal diameter (D) measured with respect to center of cathode and filament terminal diameter (C) - 0.016 inches.

A69087-72B126 (2-3-65)

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings.

TUBES

This technical information is proprietary and is furnished only as a service to customers.

ZP-1074

TRIODE

Internal Feedback for Oscillator Service Grounded-Grid Operation

Heat-Sink and Forced-Air Cooled Metal and Ceramic

The ZP-1074 is a heat-sink-cooled triode that features internal feedback. It is especially designed for pulsed oscillator service in L-band. Applications for which it is particularly well suited include airborne or ground-based radar, and high level signal generators.

The ZP-1074 is a higher-voltage version of the ZP-1025. Ratings include a DC plate voltage of 3500 volts under grid-pulsed-oscillator service for 5 kilowatts of peak power output at 0.005 duty.

Other features include small size, high peak power as a plate-pulsed oscillator, long-pulse-width capability, long life and reliability.

	Minimum	Bogey	Maximu	m
ELECTRICAL				
Heater Voltage* Heater Current Cathode Heating Time. Direct Interelectrode Capacitances	3.5 1	6.3 3.8	4.0	Volts Amperes Minute
Cathode to Plate Input Output		0.5 15.5 5.9	Ē	144 f µµ f µµ f
MECHANICAL				
Mounting Position – Any Net Weight, approximate			3 1/4	Ounces
Cooling - Heat-Sink and Forced Air				
Anode Temperature [§] Ceramic Temperature at Any Point, maximum		· · · · · · ·	250 200	C C
PLATE-PULSED OSCILLATOR - CLASS C				
Maximum Ratings				
DC Plate Voltage, During Pulse DC Plate Current, During Pulse DC Grid Voltage, During Pulse DC Grid Current, During Pulse Plate Dissipations Grid Dissipation Pulse Width \diamond Duty Factor ϕ		•••••	$8.0 \\ 10.0 \\ -400 \\ 5.0 \\ 110 \\ 3.5 \\ 10 \\ 0.003$	Kilovolts Amperes Volts Amperes Watts Watts Microseconds

The specifications of this type are subject to change. Delivery of samples and the existence of these data do not imply continued availability of types with the same characteristics or dimensions. For the most recent information concerning the status of this device, please consult your local Tube Department Regional Sales Office. ET-J38

DEVELOPMENTAL

TYPE

ZP-1074 PTI-170A Page 1 9-67

TYPICAL OPERATION

Grounded-Grid Service at 1300 Megacycles, $3/4\lambda$ Output Circuit

DC Plate Voltage, During Pulse 8.0	6.0	Kilovolts
DC Plate Current, During Pulse 9.0	7.0	Amperes
DC Grid Current, During Pulse 4.0	4.3	Amperes
(Grid Resistor = 50 Ohms) Power Output, During Pulse (useful) 40.0	24.0	Kilowatts
Pulse Width 10	10 0.001	Microseconds
Duty Factor	0.001	

GRID-PULSED OSCILLATOR - CLASS C

Maximum Ratings

Kilovolts
Amperes
Volts
Watts
Microseconds
57)) 52

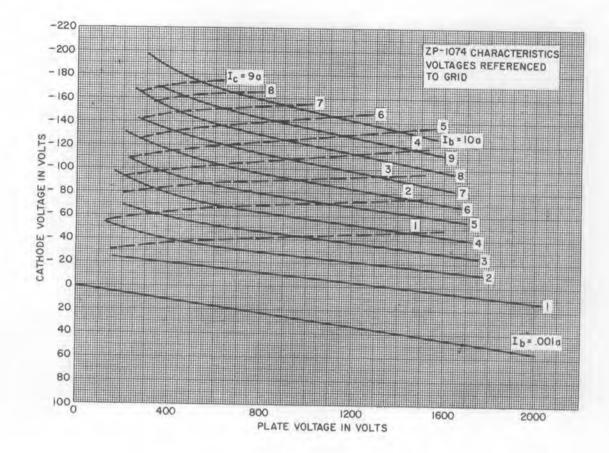
Typical Operation

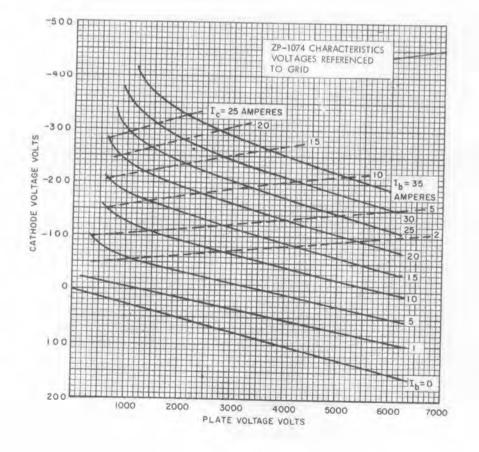
Grounded-Grid Circuit at 1100 Megacycles, $1/4 \lambda$ Output

DC Plate Voltage	2200	Volts
DC Plate Current, During Pulse 3.5	2.7	Amperes
DC Grid Voltage Supply**110	-104	Volts
DC Grid Voltage Supply**	1.25	Amperes
DC Grid Current, During Pulse 1.7 Power Output, During Pulse (useful) 5.0	2.4	Kilowatts
Power Output, During Pulse (useful)	10	Microseconds
Duty Factor0.005	0.02	

* Because of back-heating due to transit-time effects, it may be necessary to reduce the heater voltage. For the 1100 mcs, 2 kw, 0.02 duty condition, the typical heater voltage is 5.5 volts. The optimum heater voltage for any application should be determined by RF performance testing.

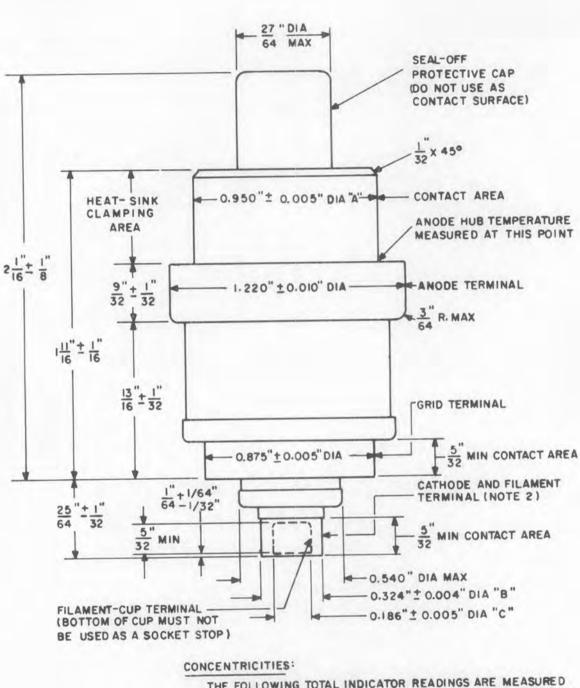
§ A suitable clamp-on radiator or heat-sink clamping arrangement must be provided to limit the anode hub temperature to the value specified. Higher plate dissipation is allowable with provision for proper cooling.


Pulse duration is measured between points at 70 percent of the peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse. For applications requiring longer pulses, refer to the tube manufacturer.


øMaximum ratio of on-time to elapsed time during any 3.3-millisecond period.

\$\$ Maximum ratio of on-time to elapsed time during any 75-millisecond period.

**With a series grid resistance of 50 ohms.


ZP-1074 PTI-170A Page 3 9-67

ZP-1074 PTI-170A Page 4 9-67

THE FOLLOWING TOTAL INDICATOR READINGS ARE MEASURED WITH RESPECT TO A CENTERLINE DETERMINED BY THE CENTERS OF THE ANODE TERMINAL AND CONTROL-GRID TERMINAL.

DIAMETER A-0.030 INCHES DIAMETER B-0.036 INCHES DIAMETER C-0.042 INCHES

TOTAL INDICATOR READING OF FILAMENT- CUP TERMINAL DIAMETER (C) MEASURED WITH RESPECT TO CENTER OF CATHODE AND FILAMENT-TERMINAL DIAMETER (B)-0.016 INCHES.

TUBE DEPARTMENT

GENERAL 🐲 ELECTRIC

Schenectady, N. Y. 12305

Courtesy of http://BlackRadios.terryo.org PRELIMINARY GENERAL & ELECTRIC TECHNICAL INFORMATION

These ratings represent those of current samples of this type. Refer to the Objective Technical Information sheet for design-objective ratings. DEVELOPMENTAL TYPE

> ZP-1079 PTI-169 Page 1 10-66

Water Cooled

Metal and Ceramic

This technical information is proprietary and is furnished only as a service to customers.

ZP-1079

TETRODE

Pulsed Service Grounded-Grid Operation

TUBE DEPARTMENT

Schenectady 5, N.Y.

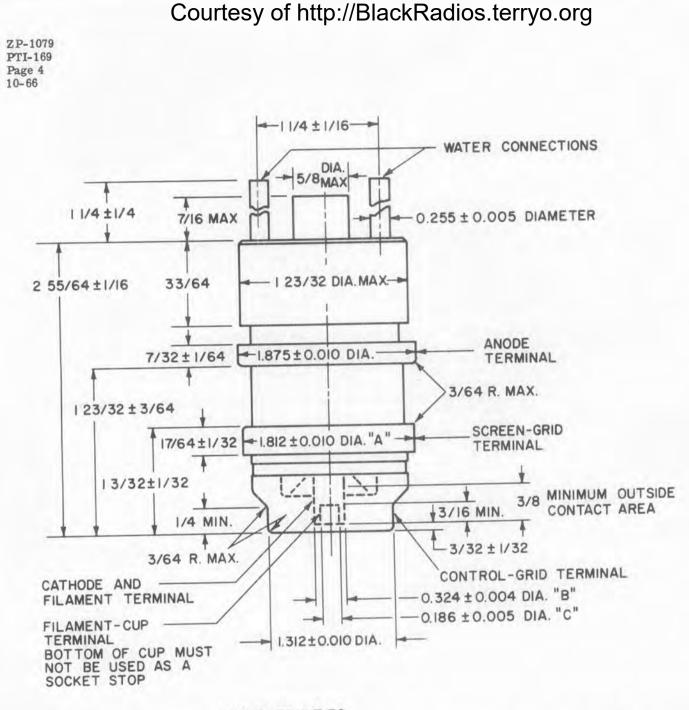
Integral Water Jacket

The ZP-1079 is a small-size, four-electrode transmitting tube especially designed for RF grid-pulsed or plate-andscreen pulsed amplifier service at VHF-UHF frequencies. This tetrode is particularly well suited for use in groundbased radar equipment such as steerable array radar.

The tube is capable of providing useful output at frequencies up to approximately 1500 megacycles.

The features of the ZP-1079 include long life and reliability, long pulse width, high peak power, high gain and broadbanding capability.

These together with such design factors as an oxide-coated cathode, coaxial elements, and metal-ceramic construction make the tube well adapted to application in modern systems where high performance and reliability are important.


ELECTRICAL	Minimum	Bogey	Maximu	m
Heater Voltage §	-	6.3	6.8	Volts
Heater Current	-	5.6	-	Amperes
Cathode Heating Time Direct Interelectrode Capacitances*	1	-	-	Minute
Input	-	24	-	uuf
Output	-	9	-	μuf
MECHANICAL				
Mounting Position - Any				
Net Weight			14	Ounces
THERMAL				
Cooling – Water and Forced Air‡ Water Flow				
Anode			0.5	Minimum Gallons
Pressure Drop at Rated Flow, approx				per Minute
Outlet Temperature				Pound per Square Inch Maximum C
Anode Hub Temperature Δ			250	Maximum C
AIT Flow				Maximum C
Anode Ceramic, approximate			1	Cubic Foot per Minute
Screen and Control Grid, approximate			1	Cubic Foot per Minute
neater and Cathode, approximate			1	Cubic Foot per Minute
Ceramic Temperature at any Point		*******	200	Maximum C
RADIO-FREQUENCY POWER AMPLIFIER - Class B				
Maximum Ratings				
Plate-and Screen-Grid Pulsed, 500 Megacycles				
DC Plate Voltage, during pulse			10	Kilovolts
DC Plate Current, during pulse			10	Amperes
DC Grid-No. 2 voltage, during pulse	A AND A G A M A		2000	Volts
DC Grid-No. 2 Input			15	Watts

The specifications of this type are subject to change. Delivery of samples and the existence of these data do not imply continued availability of types with the same aracteristics or dimensions. For the most recent information concerning the status of this device, please consult your local Tube Department Regional Sales Office.

RADIO-FREQUENCY POWER AMPLIFIER - Class B (Continued) Plate Dissipation 🌢 750 Watts Volts DC Grid-No. 1 Current, during pulse 2.5 Amperes Microseconds Typical Operation Grounded-grid Circuit, 500 Megacycles, 1/4 λ Output Circuit Kilovolts DC Grid-No. 2 Voltage, during pulse 1400 Volts DC Grid-No. 1 Voltage, not pulsed-125 Volts Volts Volts DC Plate Current, during pulse 9.2 Amperes DC Grid-No. 1 Current, during pulse 1.1 Amperes DC Grid-No. 2 Current, during pulse 0.47 Amperes Driving Power at Tube, during pulse 2.6 Kilowatts Power Output, during pulse (useful) 52 Kilowatts Microseconds RADIO-FREQUENCY POWER AMPLIFIER - Class C Maximum Ratings Pulsed Drive, 1250 Megacycles Kilovolts DC Plate Current, during pulse 6 Amperes DC Grid-No. 2 Voltage 1.1 Kilovolts Watts Volts Amperes Watts Microseconds Typical Operation Grounded-grid Circuit at 1100 Megacycles, 3/4 & Output Circuit DC Plate Voltage** 4.8 DC Plate Current, during pulse 4.2 Kilovolts Amperes DC Grid-No. 2 Voltage Kilovolt DC Grid-No. 2 Current, during pulse 100 Milliamperes Volts DC Grid-No. 1 Current, during pulse 200 Milliamperes Kilowatts Kilowatts Microseconds

ZP-1079 **PTI-169** Page 3 10-66

- § Because the temperature of the cathode is increased by back bombardment of electrons at UHF, required heater voltage for optimum life decreases with increasing frequency. The amount of heater-voltage reduction is dependent on operating conditions. However, this voltage should not be less than 5.5 volts.
- Control grid connected directly to screen grid. t
- Water and forced air cooling should be applied during the application of any voltages.
- Δ Measured at the base of the water jacket and adjacent to the plate terminal. 4 Maximum average value.
- For applications that require longer pulses or higher duty refer to the tube manufacturer for recommendations. 0
- Pulse duration measured between points at 70 percent of peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse. Maximum ratio of on-time to elapsed time during any 12.5 millisecond period. ø
- \$\$\$ Maximum ratio of on-time to elapsed time during any 1.5-millisecond period.
- A minimum surge-limiting resistance of 50 ohms must be placed between the plate of the tube and the B⁺ power supply at steady-state voltages greater than 3.5 kilovolts.

CONCENTRICITIES:

THE FOLLOWING TOTAL INDICATOR READINGS ARE MEASURED WITH RESPECT TO A CENTERLINE DETERMINED BY THE CENTERS OF THE ANODE TERMINAL AND CONTROL-GRID TERMINAL.

> DIAMETER A-0.016 INCHES DIAMETER B-0.036 INCHES DIAMETER C-0.042 INCHES

TOTAL INDICATOR READING OF FILAMENT-CUP-TERMINAL DIAMETER (C) MEASURED WITH RESPECT TO CENTER OF CATHODE AND FILAMENT-TERMINAL DIAMETER (B)=0.016 INCHES.

OBJECTIVE FOR DEVELOPMENTAL TYPE

<u>Y-1124</u>*

TRIODE

The Y-1124 is a triode of ceramic and metal planar construction primarily intended for use as a grid-pulsed oscillator at frequencies up to 6000 megacycles.

GENERAL

Electrical

Cathode - Coated Unipotential

Heater Characteristics and Ratings		
Heater Voltage, AC or DC+	6.3±0.3	Volts
Heater Current‡	0.215	Amperes
Cathode Warm-up Time§	3	Seconds
Direct Interelectrode Capacitances¶		
Grid to Plate	1.1	pf
Input	2.1	pf
Output Heater to Cathode	0.018	pf
heater to Gathode	1.7	pf

Mechanical

Mounting Position - Any

Absolute-Maximum Values

MAXIMUM RATINGS

Plate Voltage	400	Volts
Peak Positive Grid Voltage#	100	Volts
Plate Dissipation	3.5	Watts
DC Plate Current	10	Milliamperes
DC Grid Current	5.0	Milliamperes
Peak Grid Current	300	Milliamperes
Peak Plate Current#	600	Milliamperes
Heater-Cathode Voltage		
Heater Positive with Respect to Cathode	50	Volts
Heater Negative with Respect to Cathode	50	Volts
Envelope Temperature at Hottest Point	250	C

<u>Y-1124</u>

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

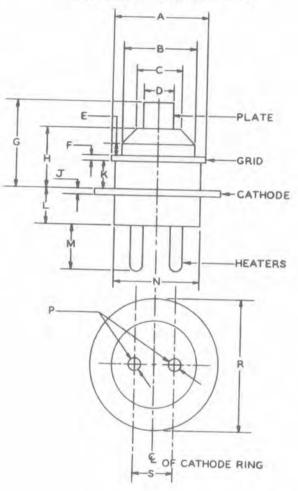

Average Characteristics

Plate Voltage Cathode-Bias Resistor →Amplification Factor → Transconductance → Plate Current	125 82 75 16000 12.5	Volts Ohms Micromhos Milliamperes
Grid-Pulsed Oscillator Service Frequency Duty Factor Pulse Duration Pulse Repetition Rate	5700 0.016 1.0 16000 400	Megacycles Microseconds Pulses per Second Volts
Plate Voltage Plate Current Average Average During Grid Pulse Power Output Average During Grid Pulse	9.6 600 40	Milliamperes Milliamperes Watts

- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- + The equipment designer should design the equipment so that the heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- # Heater current of a bogey tube at Ef = 6.3 volts.
- § Time required for plate current to reach 80% of its steady-state value.
- Measured using a grounded adapter that provides shielding between external terminals to tube.
- # One microsecond pulse, 16000 pulses per second.

8/18/67 (B) Supersedes 6/29/67 (B)

PHYSICAL DIMENSIONS

C

Ref.		INCHES		M	ILLIMETER	s
	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum
A	0.357		0.363	9.068	ATOMALITA I	9.220
В			0.285	7.000		7.24
C		0.180			4.57	1:24
D	0.108		0.112	2.743	4.31	2.845
E		0.040			1.02	4.043
F	0.025		0.031	0.635	1.02	0.787
G	0.315		0.335	8.00		8.51
H	0.216		0.232	5.49		5.89
J	0.025		0.031	0.635		0.787
K	0.094	1	0.102	2.388		2.591
L	0.143		0.157	3.63		
M	0.165		0.185	4.19		3.99
N			0.330	4.17		4.70
P	0.048		0.054	1.219		8.38
R	0.476		0.484			1.372
S	0.130			12.090		12.294
- 1	01+30		0.142	3.30		3.61

Note: The millimeter dimensions are derived from the original inch dimensions.

OBJECTIVE FOR DEVELOPMENTAL TYPE

Y-1171*

METAL-CERAMIC TRIODE

The Y-1171 is a metal-ceramic, planar triode intended for use as a CW oscillator at frequencies through X-band.

GENERAL

Electrical

1

l

U

1

Cathode - Coated Unipotential

Heater Characteristics and Ratings Heater Voltage, AC or DC↑ → Heater Current‡ → Direct Interelectrode Capacitances§	6.3±0.3 0.27	Volts Amperes
Grid to Plate	1.1	pf
Input	1.95	pf
Output	Ø	pf
Heater to Cathode	ø	pf

Mechanical

Operating Position - Any

MAXIMUM RATINGS

Absolute-Maximum Values

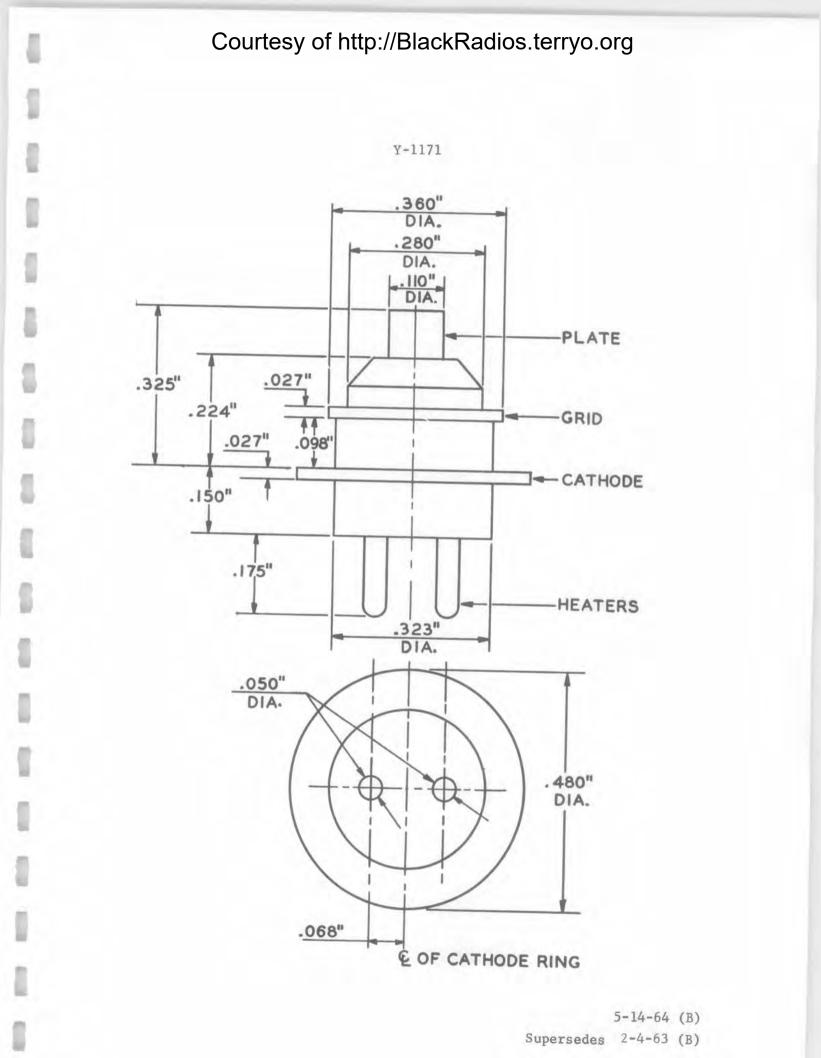
Plate Voltage Negative DC Grid Voltage	200 Ø	Volts
→ Plate Dissipation¶ DC Grid Current	4.5 Ø	Watts
→ DC Cathode Current Heater-Cathode Voltage	30	
Heater Positive with Respect to Cathode Heater Negative with Respect to Cathode	50 50	Volts Volts
→ Envelope Temperature at Hottest Point	250	C

Y-1171

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.


CHARACTERISTICS AND TYPICAL OPERATION

→ Average Characteristics

100	Volts
0	Volts
55	
2750	Ohms
20000	Micromhos
30	Milliamperes
	55 2750 20000

Plate Voltage	150	Volts
	2200	Ohms
Grid Resistor	30	Milliamperes
Plate Current	10	Milliwatts
Power Output, approximate		

- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- † The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- # Heater current of a bogey tube at Ef = 6.3 volts.
- § Without external shield.
- When used in a cavity that provides adequate heat-sink capacity.
- Ø To be determined.

OBJECTIVE FOR DEVELOPMENTAL TYPE

Y-1223*

PLANAR TRIODE

The Y-1223 is a triode of ceramic-and-metal planar construction intended for use as a radio-frequency CW amplifier or oscillator at frequencies up to 2500 megacycles.

GENERAL

Electrical

l

ġ

Ū

l

Cathode - Coated Unipotential

Heater Characteristics and Ratings

Heater Voltage, AC or	DC ‡								6.3±0.3	Volts
neater currenty								1	0.4	Amporos
Driect Intererectrode	Cap	aci	fan	CAC						
\rightarrow Grid to plate: (g t	O D).		1.1	÷				2 /	-F
\rightarrow Input: q to (h+k)									. 2.4	pf
\rightarrow Input: g to (h+k).						•			. 6.8	pf
Output: p to (h+k)		•	•		•				. 0.03	pf

Mechanical

Operating Position - Any

MAXIMUM RATINGS

Absolute-Maximum Values

Plate Voltage \rightarrow Peak Grid Voltage											600	Volts
"can of the vortage.											ch	
- Idee Dissipation											20	Watts
orra ourrent					1.0						de	
Cathode Current . Heater-Cathode Volt			•	•	•	·	•	•	•		100	Milliamperes
Heater Positive	with	R	esp	ect	to	Ca	tho	de			50	Volts
Heater Negative	with	1 R	esp	ect	to	Ca	tho	de			50	Volts
Envelope Temperature	e at	H	otte	est	Po	int					300	C

Y-1223

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment. The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

→ CHARACTERISTICS AND TYPICAL OPERATION

Average Characteristics

Plate Voltage	•	•	•	•	•	•	:	•	. 300 . 10	Volts Ohms
1 1: Cinction Factor									· 177	01
plate Benjatance approximate							+		1330	Ohms Micromhos
Transporductance										Milliamperes
Plate Current	•		*			*				
Grid Voltage, approximate Ib = 100 Microamperes					•		÷		-5.5	Volts

Class C Amplifier

\rightarrow Frequency								•		2300	Megacycles Volts
The state of the second						1.2			+	500	VOILS
\rightarrow DC Plate Voltage		•								Ø	
DO D. 11 Maltago				1.161	 			 -			Milliamperes
DO Diete Current											Milliamperes
DC Crid Current	app	rox	ima	te							
Detating Power an	DTO	xim	nate						•	P	Watts
Power Output, min	imu	m.							•	10	

- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- § Heater current of a bogey tube at Ef = 6.3 volts.
- Without external shield.
- # With adequate heat sink attached to threaded plate stud.
- Ø To be determined.

3/13/66 (B) Supersedes 2/10/66 (B)

OBJECTIVE FOR DEVELOPMENTAL TYPE

Y-1236*

PLANAR TRIODE

The Y-1236 is a triode of ceramic and metal planar construction intended for use as a grid or plate-pulsed oscillator at frequencies up to 4300 megacycles. In addition, it may be used as a CW oscillator at frequencies up to 2500 megacycles. Features of the Y-1236 are small size and high plate dissipation capability.

GENERAL

Electrical

Cathode - Coated Unipotential

Heater Characteristics and Ratings Heater Voltage, AC or DC+ Heater Current‡ Direct Interelectrode Capacitances§	6.3±0.3 0.5	Volts Amperes
→ Grid to Plate: (g to p)	2.0	pf
Input: g to (h + k)	5.0	pf
Output: p to (h + k)	0.05	pf

Mechanical

Operating Position - Any

MAXIMUM RATINGS

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

Y-1236

MAXIMUM RATINGS (Continued)

Absolute-Maximum Values

Plate-Pulsed Oscillator	or	Amplifier	Service
-------------------------	----	-----------	---------

Cathode Heating Time, minimum	60	Seconds
Peak Positive-Pulse Plate Supply Voltage	3000	Volts
Duty Factor of Plate Pulse¶	0.01	
Pulse Duration	2.0	Microseconds
Plate Current		
Average	20	Milliamperes
Average During Plate Pulse#	2.0	Amperes
Negative Grid Voltage		
Average During Plate Pulse	100	Volts
Grid Current		
Average	10	Milliamperes
Average During Plate Pulse	1.0	Amperes
Plate DissipationA	30	Watts
Peak Heater-Cathode Voltage		
Heater Positive with Respect to Cathode	50	Volts
Heater Negative with Respect to Cathode	50	Volts
Envelope Temperature at Hottest Point	300	C
Envelope Temperature at nottest Torne		
CW Oscillator Service		
Plate Voltage	600	Volts
Plate Current	90	Milliamperes
Grid Current	30	Milliamperes
Cathode Current	120	Milliamperes
Plate Dissipation Δ	30	Watts
Peak Heater-Cathode Voltage		
Heater Positive with Respect to Cathode	50	Volts
Heater Negative with Respect to Cathode	50	Volts
Envelope Temperature at Hottest Point	300	C

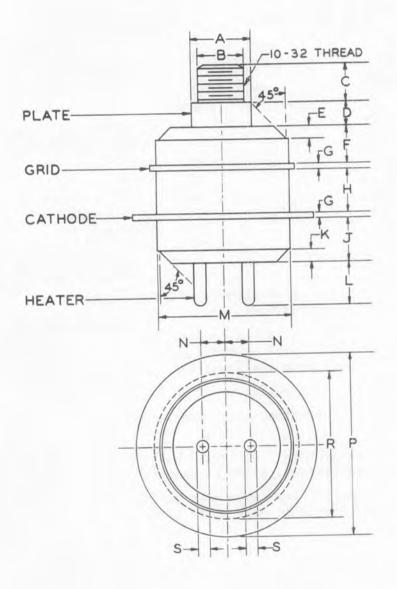
CHARACTERISTICS AND TYPICAL OPERATION

Average Characteristics		
Plate Voltage Cathode-Bias Resistor Amplification Factor Plate Resistance, approximate Transconductance Plate Current	200 100 55 2040 27000 25	Volts Ohms Micromhos Milliamperes
Plate-Pulsed Oscillator Service		
Frequency Heater Voltage	1200 6.3 0.01	Megacycles Volts
Duty Factor Pulse Duration Pulse Repetition Plate	1.0 10000	Microseconds Pulses per Second
Peak Positive-Pulse Plate Supply Voltage	2000	Volts

Y-1236

CHARACTERISTICS AND TYPICAL OPERATION (Continued)

Plate Current		
Average	20	Milliamperes
Average During Plate Pulse	2.0	Amperes
Grid Current		
Average	Ø	Milliamperes
Average During Plate Pulse	Ø	Amperes
Useful Power Output		
Average	20	Watts
Average During Plate Pulse	2.0	Kilowatts
CW Oscillator Service		
Frequency	2300	Megacycles
Plate Voltage	600	Volts
Grid Voltage	Ø	
Plate Current	80	Milliamperes
Grid Current	25	Milliamperes
Power Output, approximate	20	Watts
		The second second


- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- + The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- # Heater current of a bogey tube at Ef = 6.3 volts.
- § Measured using a grounded adapter that provides shielding between external terminals of tube.
- Applications with a duty factor greater than 0.01 should be referred to your General Electric tube sales representative for recommendation.
- # The regulation and/or series plate-supply impedance must be such as to limit the peak current, with the tube considered a short circuit, to a maximum of 25 amperes.

Δ With adequate heat sink attached to threaded plate stud.

Ø To be determined.

7-26-65 (B) Supersedes 4-26-63 (B)

Y-1236

	Inches									
Ref.	Minimum	Maximum								
A	0.247	0.253								
В	0.184	0.190								
C	0.145	0.155								
D	0.095	0.105								
E	0.040	0.060								
F	0.145	0.155								
G	0.025	0.031								
H	0.170	0.180								
J	0.170	0.180								
K	0.040	0.060								
L	0.170	0.180								
M	0.535	0.565								
N	0.093	0.107								
P	0.748	0.758								
R	0.598	0.608								
S	0.047	0.053								

OBJECTIVE FOR DEVELOPMENTAL TYPE

Y-1251*

PLANAR TRIODE

The Y-1251 is a high-mu triode of ceramic-and-metal planar construction intended for use as an oscillator or radio-frequency power amplifier up to 6000 megacycles.

GENERAL

Electrical

0

l

Cathode - Coated Unipotential

Heater Characteristics and Ratings Heater Voltage, AC or DC# 6.3±0.3 Volts Heater Current§ 0.24 Direct Interelectrode Capacitances¶ Amperes Grid to Plate: (g to p) 1.1 pf Input: g to (h + k)1.2 pf Output: p to (h + k)0.012 pf

Mechanical

Operating Position - Any

MAXIMUM RATINGS

Absolute-Maximum Values		
Plate Voltage Positive DC Grid Voltage	200 0	Volts Volts
Negative DC Grid Voltage Plate Dissipation	50	Volts
DC Grid Current	2.5	Watts
DC Cathode Current	5.0	Milliamperes
Peak Cathode Current	20	Milliamperes
Heater-Cathode Voltage	80	Milliamperes
Heater Positive with Respect to Cathode	50	Volts
Heater Negative with Respect to Cathode Grid Circuit Resistance	50	Volts
Envelope Temperature at White a state	10000	Ohms
Envelope Temperature at Hottest Point	250	C

Y-1251

MAXIMUM RATINGS (Continued)

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

Average Characteristics

0			
Plate Voltage	100	150	Volts
Grid Voltage	0		Volts
Cathode-Bias Resistor		82	Ohms
Amplification Factor		65	
Transconductance	15500	12500	Micromhos
→ Plate Current	18	13.5	Milliamperes
Oscillator Service			
Plate Voltage		150	Volts
Grid Resistor - Adjusted for of 15 milliamperes	r a plate current		
Plate Current		15	Milliamperes
Grid Current		ø	Milliamperes
Frequency		5900	Megacycles
Power Output, approximate		20	Milliwatts

- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- § Heater current of a bogey tube at Ef = 6.3 volts.
- Measured using a grounded adapter that provides shielding between external terminals of tube.

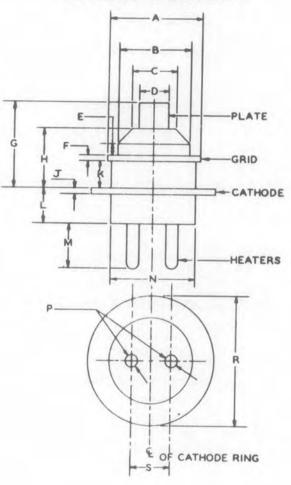
Ø To be determined.

11-22-67 (B) Supersedes 9-13-65 (B)

<u>Y-1251</u>

1

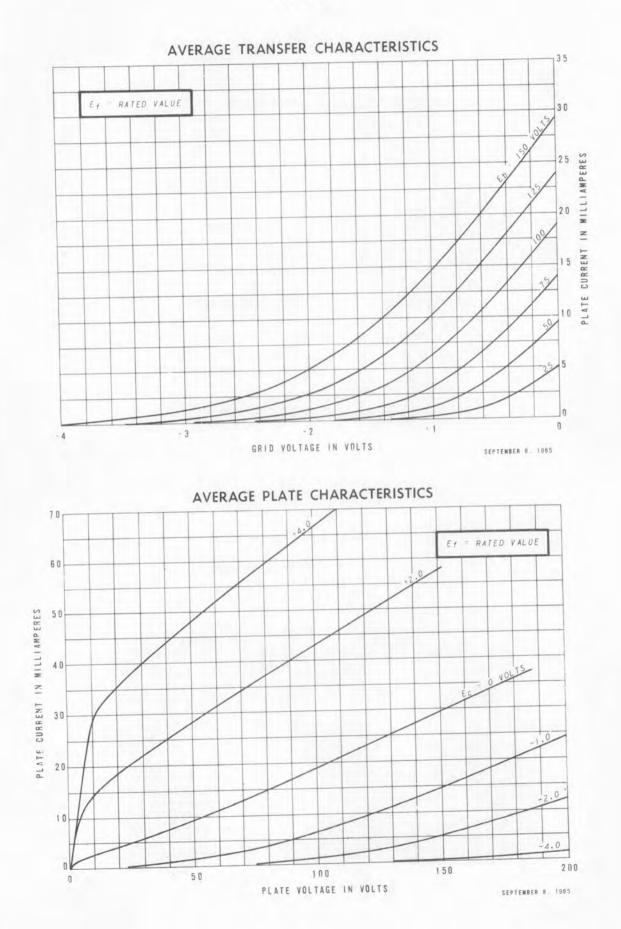
1


1

0

8

0


PHYSICAL DIMENSIONS

Pof		INCHES		M	ILLIMETER	S
Ref. Minimum	Nominal Maximu		Minimum	Nominal	Maximum	
A	0.357		0.363	9.068		9.220
В			0.285			7.24
С		0.180			4.57	
D	0.108		0.112	2.743		2.845
E		0.040			1.02	
F	0.025		0.031	0.635		0.787
G	0.315		0.335	8.00		8.51
H	0.216		0.232	5.49		5.89
J	0.025		0.031	0.635		0.787
K	0.094		0.102	2.388		2.591
L	0.143		0.157	3.63		3.99
M	0.165		0.185	4.19		4.70
N			0.330			8.38
P	0.048		0.054	1.219		1.372
R	0.476		0.484	12.090		12.294
S	0.130		0.142	3.30		3.61

Note: The millimeter dimensions are derived from the original inch dimensions.

Y-1251

OBJECTIVE FOR DEVELOPMENTAL TYPE

<u>Y-1266</u>*

METAL-CERAMIC TRIODE

For UHF Oscillator Applications

The Y-1266 is a medium-mu triode of ceramic-and-metal planar construction primarily intended for use as a UHF oscillator.

GENERAL

Electrical

0

1

Cathode - Coated Unipotential

Heater Characteristics and Ratings Heater Voltage, AC or DC‡ Heater Current§ Direct Interelectrode Capacitances¶	6.3±0.3 0.24	Volts Amperes
Grid to Plate: (g to p)	1.4	pf
Input: g to (h + k)	1.7	pf
Output: p to (h + k)	0.016	pf

Mechanical

. . .

Operating Position - Any

MAXIMUM RATINGS

Absolute-Maximum Values

Plate Voltage Plate Dissipation	350	Volts
DC Grid Current	4.0	Watts
DC Cathode Current	15	Milliamperes
Heater-Cathode Voltage	40	Milliamperes
Heater Positive with Respect to Cathode Heater Negative with Respect to Cathode	50	Volts
Grid Circuit Resistance	50	Volts
Envelope Temperature at Hottest Point	Ø 250	С

Y-1266

CHARACTERISTICS AND TYPICAL OPERATION

Average Characteristics		
	150	Volts
Plate Voltage	0	Volts
Grid Voltage	40	
Amplification Factor	8500	Micromhos
Transconductance	35	Milliamperes
\rightarrow Plate Current		
UHF Oscillator Service		
mi in Williams	300	Volts
→ Plate Voltage	1500	Ohms
Grid Resistor	30	Milliamperes
Plate Current	10	Milliamperes
Grid Current	400	Megacycles
Frequency Power Output, approximate	5	Watts

* Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.

The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.

§ Heater current of a bogey tube at Ef = 6.3 volts.

¶ Without external shield.

Ø To be determined.

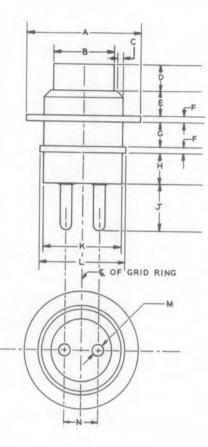
11-22-67 (B) Supersedes 11-4-65 (B)

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

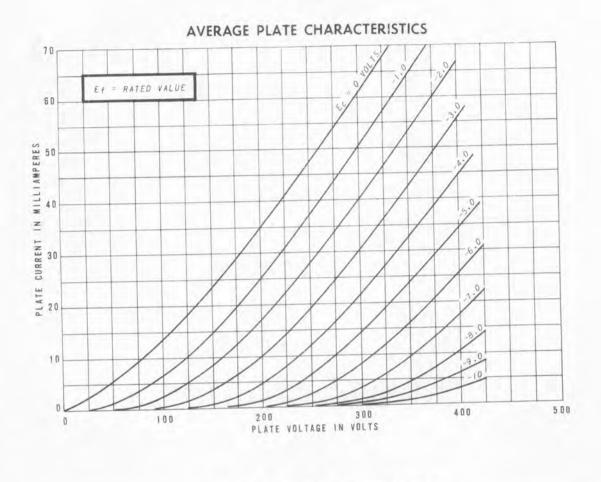
The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

Y-1266

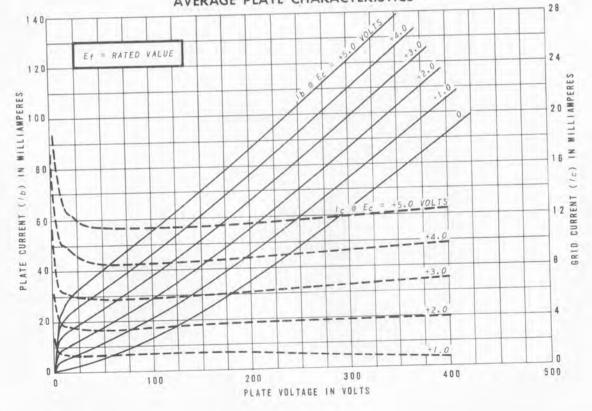

l

1

0


Q

m



Ref.	Inches									
MCT .	Minimum	Nominal	Maximum							
A	0.476		0.484							
В	0.246		0.254							
C		0.030								
D	0.092		0.108							
E	0.095		0.103							
F	0.025		0.031							
G	0.094		0.102							
H	0.120		0.128							
J	0.165		0.185							
K			0.330							
L	0.357		0.363							
M	0.048		0.054							
N	0.130		0.142							

Y-1266

AVERAGE PLATE CHARACTERISTICS

Y-1266

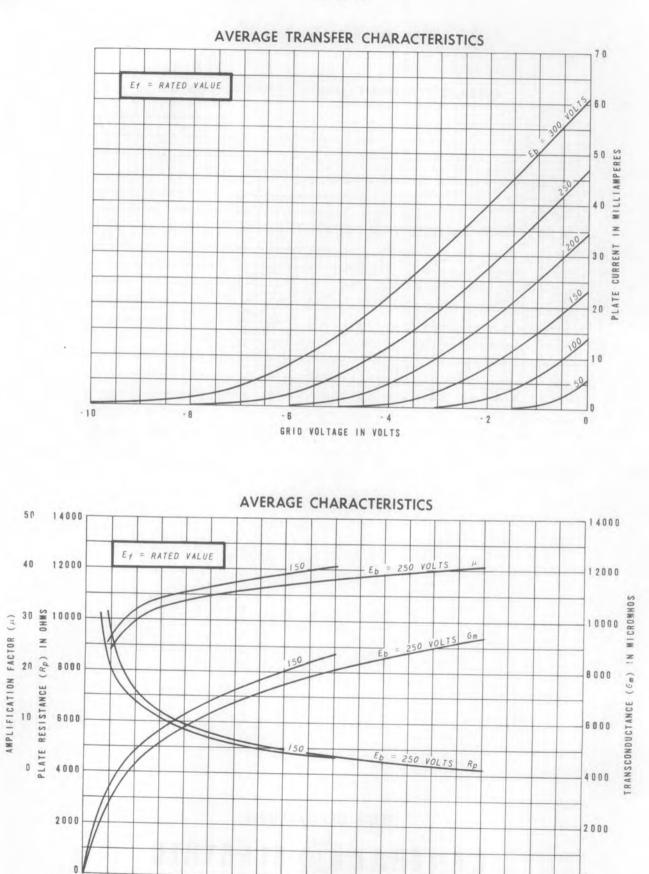
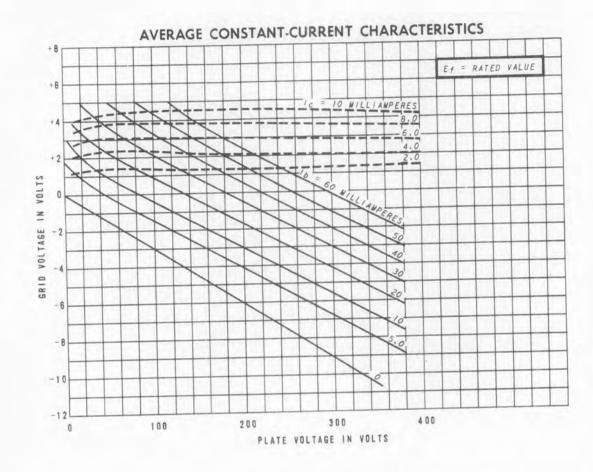



PLATE CURRENT IN MILLIAMPERES

Y-1266

OBJECTIVE FOR DEVELOPMENTAL TYPE

<u>Y-1397*</u>

PLANAR TRIODE

The Y-1397 is a high-mu triode of ceramic and metal planar construction intended for use as a plate-pulsed oscillator or amplifier at frequencies up to 6000 megahertz.

GENERAL

Electrical

Cathode - Coated Unipotential

Heater Characteristics and Ra	tin	igs							
Heater Voltage, AC or DC‡ .				\sim				6.3±0.3	Volts
Heater Currenty								. 0.55	Amperes
Direct intererectione capacit	anc	es							
Grid to Plate: (g to p).								. 1.5	pf
input: $g to (n + k)$.					12.11	- C.		4 8	pf
Output: $p to (h + k)$.	•	٠					•	. 0.05	pf

Mechanical

Operating Position - Any

→ MAXIMUM RATINGS

Plate-Pulsed Oscillator or Amplifier Service - Absolute-Maximum Values

Cathode Heating Time, minimum .										60	Seconds
reak rosicive-ruise Place Suppl	VV	olta	age								becollus
4 Microseconds Pulse Duration	n.		÷.,							2000	Volts
I Microsecond Fulse Duration	1.1.1									2000	Volts
bucy ractor of riate Pulser.									(0.004	10100
Average During Plate Pulse										8.0	Milliama
Average During Plate Pulse . Negative Grid Voltage								•	•	2.0	Milliamperes
Negative Grid Voltage						•	•			2.0	Amperes
Average During Plate Pulse . Grid Current	1									100	
Grid Current	1					•			•	100	Volts
Average#										1 0	
Average During Plate Pulso			•	•	*		•	•		4.0	Milliamperes
Average During Plate Pulse .			•					+		1.0	Amperes
race prostpactonr.										6.5	Watts
a date incatter Gathode vortage											
Heater Positive with Respect	to	Cat	hod	e.						50	Volts
nealer Negalive with Respect	to	Cat	hod	0						EO	Volts
Envelope Temperature at Hottest	Po	int				-				250	
	- 0.	- 1.5 Le								250	C

Y-1397

MAXIMUM RATINGS (CONTINUED)

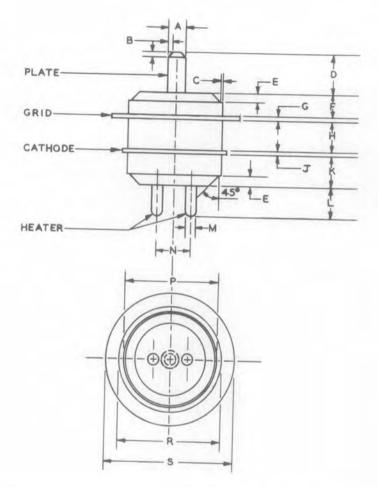
Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

Average Characteristics

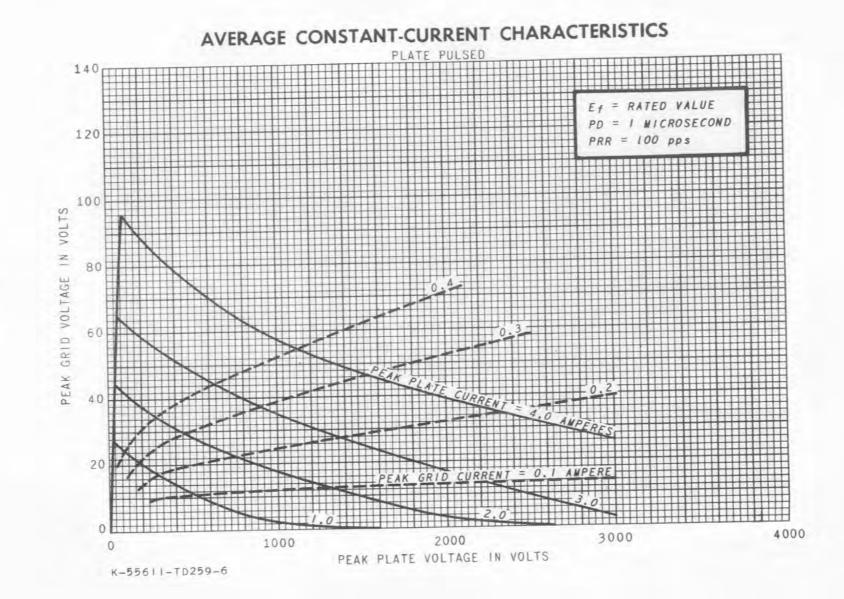

Plate Voltage									. 200	Volts
Cathode-Bias Resistor.									. 100	Ohms
Cathode-Blas Resistor	•							10.1	. 58	
Amplification Factor	*	÷				1		0	2300	Ohms
Plate Resistance, approximate .	•						1		25000	Micromhos
Transconductance	+						•		23000	Milliamperes
Plate Current	1	•	1						. 25	III I A Sharp
Crid Voltage approximate										Volts
Ib = 100 Microamperes	•	+	*	•	•		•		5	VOICS
→ Plate-Pulsed Oscillator Service										
Frequency				+					1200	Megahertz
Heater Voltage	1	1							. 6.3	Volts
Heater Voltage									0.004	
Duty Factor				1				1.2	4.0	Microseconds
Pulse Duration								-	1000	Pulses per Second
Pulse Repetition Rate.	-									Volts
Peak Positive-Pulse Supply Volta	ge			-	+				2000	
Plate Current									6.0	Milliamperes
Average									1 5	Amperes
Average During Plate Pulse .				+					. 1.3	impereo
Crid Current										Milliamperes
Average	+	+						•	1 25	Amperes
Average During Plate Pulse .			. +	+				14	.1.25	Amperes
Useful Power Output										
Average	1.1						•		. 3.0	Watts
Average During Plate Pulse .			•					•	. 800	Watts

NOTES

- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- § Heater current of a bogey tube at Ef = 6.3 volts.
- # In any 5000 microsecond interval.
- Ø To be determined.

11-22-67 (B) Supersedes 3-1-67 (B)

[


[

1

F

Ref.		INCHES		MILLIMETERS							
	Minimum Nominal N		Maximum	Minimum	Nominal	Maximum					
Α	0.122		0.128	3.099							
В		0.030		5.033	0.76	3.251					
С		0.005			0.13						
D	0.220		0.230	5.59	0.13	=					
E	0.040		0.060	1.02		5.84					
F	0.120		0.130	3.05		1.52					
G	0.025		0.031	0.635		3.30					
H	0.167		0.177	4.24		0.787					
J	0.025		0.031			4.50					
K	0.170		0.180	0.635		0.787					
L	0.170		0.180	4.32		4.57					
M	0.047			4.32		4.57					
N	0.185		0.053	1.194		1.346					
P	0.535		0.215	4.70		5.46					
R	0.598		0.565	13.59		14.35					
S	0.748		0.608	15.19		15.44					
0	0.748		0.758	19.00		19.25					

Note: The millimeter dimensions are derived from the original inch dimensions.

Y-1397

OBJECTIVE FOR DEVELOPMENTAL TYPE

Y-1481*

METAL-CERAMIC PLANAR TRIODE

For Plate-Pulsed Oscillator Applications

The Y-1481 is a planar triode intended for use as a plate-pulsed, C-band oscillator at relatively low plate voltage levels.

GENERAL

Electrical

0

Cathode - Coated Unipotential

Heater Characteristics and Ratings Heater Voltage, AC or DC‡ → Heater Current§ Direct Interelectrode Capacitances¶	6.3±0.3 0.38	Volts Amperes	
Grid to Plate: (g to p)	1.7	pf	
Input: g to (h + k)	4.5	pf	
Output: p to (h + k)	0.035	pf	

Mechanical

Cabled - IT

Operating Position - Any

See Outline Drawing for dimensions and electrical connections.

MAXIMUM RATINGS

PLATE-PULSED OSCILLATOR SERVICE - ABSOLUTE-MAXIMUM VALUES

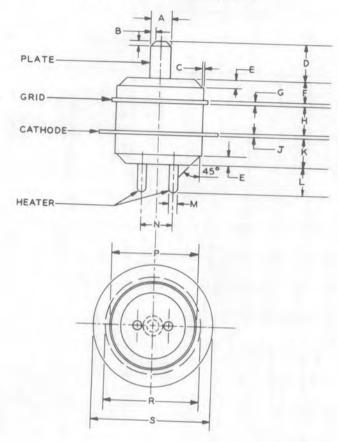
<pre>Cathode Heating Time minimum Peak Positive-Pulse Plate Supply Voltage → Duty Factor of Plate Pulse </pre>	60 1200 0.001	Seconds Volts
→ Peak Cathode Current Plate Dissipation Peak Heater-Cathode Voltage	1.5	Amperes Watts
Heater Positive with Respect to Cathode Heater Negative with Respect to Cathode Envelope Temperature at Hottest Point	50 50 250	Volts Volts C

Y-1481*

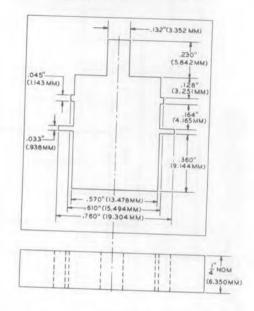
Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions. all other electron devices in the equipment. The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of

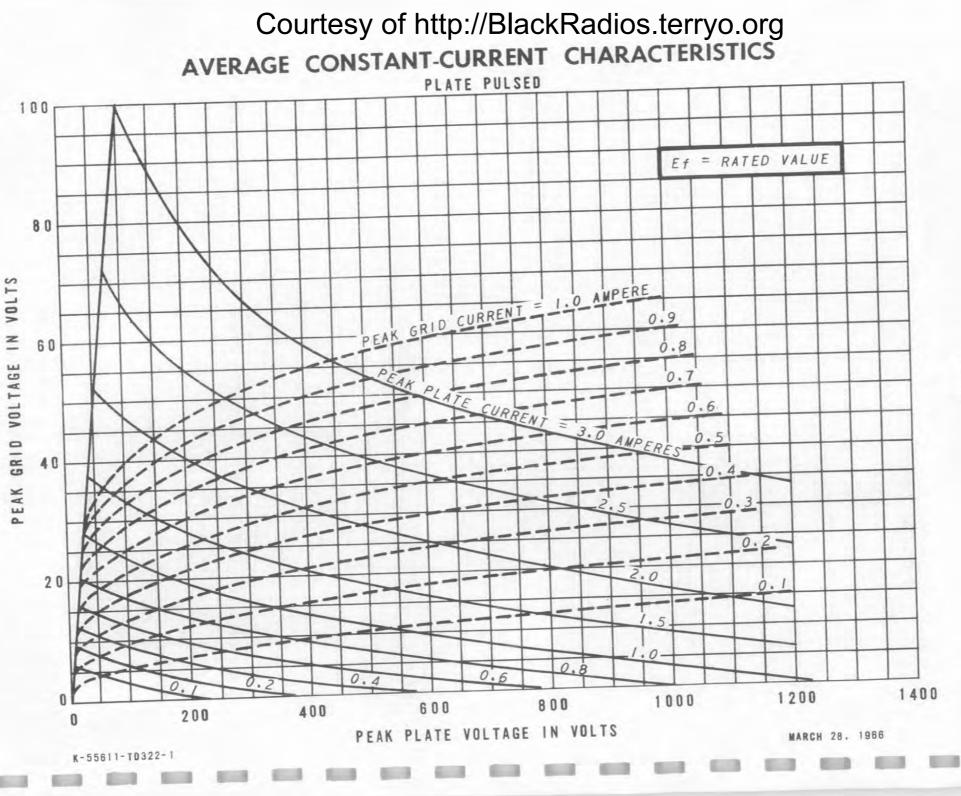
CHARACTERISTICS AND TYPICAL OPERATION


A Charactoristics	200	Volts
Average Characteristics Cathode-Bias Resistor	100	Ohms
	60	
-> Amplification Factor	2100	Ohms
Plate Resistance, approximate	29000	Micromhos
→ Transconductance	27	Milliamperes
→ Plate Current		
Grid Voltage, approximate Ib = 100 Microamperes	-6.5	Volts
Plate-Pulsed Oscillator		
Paramata	4300	Megacycles
Frequency	0.001	
Duty Factor Pulse Duration	0.1	Microseconds
Pulse Repetition Rate	10000	Pulses per Second
Peak Positive-Pulse Plate Supply Voltage	800	Volts
Plate Current	1.0	Milliamperes
Average Average During Plate Pulse	1.0	Amperes
Grid Current	0.2	Milliamperes
Average Average During Plate Pulse	0.2	Amperes
→ Useful Power Output	0.190	Watts
Average Average During Plate Pulse	190	Watts

- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- # The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- S Heater current of a bogey tube at Ef = 6.3 volts.
- Measured using a grounded adapter that provides shielding between external terminals of tube.


11-22-67 (B) Supersedes 3-30-66 (B)

PHYSICAL DIMENSIONS


ALIGNMENT GAUGE

Note: Gauge tolerances are ± 0.001 inches or ± 0.025 millimeters, unless otherwise indicated.

Ref.	ef. INCHES			MILLIMETERS						
	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum				
А	0.122	0.122 0.128		3.099						
В		0.030	0.120	3.099		3.251				
С		0.005			0.76					
D	0.220	0.005	0.000		0.13					
E	0.040		0.230	5.59		5.84				
F	0.120		0.060	1.02		1.52				
G			0.130	3.05		3.30				
H	0.025		0.031	0.635		0.787				
	0.167		0.177	4.24		4.50				
J	0.025		0.031	0.635						
K	0.170		0.180	4.32		0.787				
L	0.170		0.180	4.32		4.57				
M	0.047		0.053			4.57				
N	0.185		0.215	1.194		1.346				
P	0.535			4.70		5.46				
R	0.598	-	0.565	13.59		14.35				
S	0.748		0.608	15.19		15.44				
-	0.748		0.758	19.00		19.25				

Note: The millimeter dimensions are derived from the original inch dimensions.

Y-1481

OBJECTIVE FOR DEVELOPMENTAL TYPE

<u>Y-1530</u>*

METAL-CERAMIC PLANAR TRIODE

The Y-1530 is a planar triode primarily intended for use as a broadband radio-frequency amplifier. A feature of the Y-1530 is fast warm-up; the time required to reach a plate current level of 80% of the steady-state value is 4 seconds.

GENERAL

Electrical

Ū

Cathode - Coated Unipotential

Heater Characteristics and Ratings		
Heater Voltage, AC or DC‡	6.3±0.3	Volts
Heater Current§	0.5	Amperes
→ Cathode Heating Time¶	0.5	
Direct Interelectrode Capacitances#	5	Seconds
Grid to Plate: (g to p)	1.7	-5
Input: g to $(h + k)$		pf
Output: $p to (h + k)$	6.0	pf
I I I I I I I I I I I I I I I I I I I	0.018	pf

Mechanical

Operating Position - Any

See Outline Drawing for dimensions and electrical connections.

MAXIMUM RATINGS

Absolute-Maximum Values

Plate Voltage Positive DC Grid Voltage	330	Volts
	0	Volts
Negative DC Grid Voltage	50	Volts
→ Plate Dissipation	6.5	Watts
DC Cathode Current Heater-Cathode Voltage	30	Milliamperes
Heater Positive with Respect to Cathode	50	Volts
Heater Negative with Respect to Cathode	50	Volts

Y-1530

MAXIMUM RATINGS (Continued)

Grid Circuit Resistance	
With Cathode Bias	
Envelope Temperature at Ho	ttest Point

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

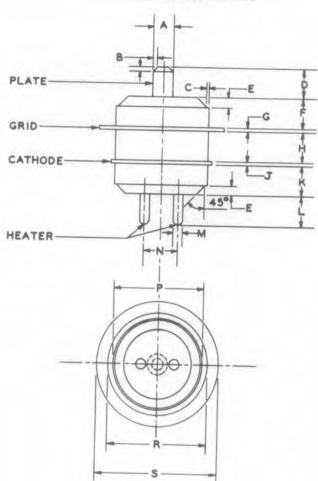
The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of 0.01 Megohms 250 C

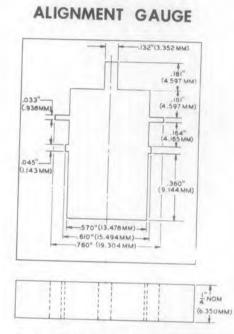
all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

Average Characteristics


	200	Volts
Plate Voltage	+6.0	Volts
Grid Voltage	270	Ohms
Cathode-Bias Resistor	225	
Amplification Factor	4500	Ohms
Plate Resistance, approximate	50000	Micromhos
Transconductance Plate Current	24	Milliamperes
Grid Voltage, approximate Ib = 100 Microamperes	-3	Volts


- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- § Heater current of a bogey tube at Ef = 6.3 volts.
- Time required for plate current to reach 80% of its steady-state value.
- # Without external shield.

11-22-67 (B) Supersedes 9-1-65 (B)

Y-1530

PHYSICAL DIMENSIONS

Note: Tolerances are ±0.001 inches or ±0.025 millimeters, unless otherwise indicated.

Ref.	-	INCHES		MILLIMETERS						
Minimum	Nominal	Maximum	Minimum	Nominal	Maximum					
A	0.122		0.128	3.099	ATOMA LELA I					
В		0.030		51077	0.76	3.251				
C		0.005								
D	0.170		0.180	4.32	0.13					
E	0.040		0.060			4.57				
F	0.165	-		1.02		1.52				
G	0.025		0.175	4.19		4.45				
Н	0.167		0.031	0.635		0.787				
J			0.177	4.24		4.50				
-	0.025		0.031	0.635		0.787				
K	0.170		0.180	4.32	-	4.57				
L	0.170		0.180	4.32		4.57				
M	0.047		0.053	1.194						
N	0.185		0.215	4.70		1.346				
P	0.535		0.565			5:46				
R	0.598			13.59		14.35				
S	0.748		0.608	15.19		15.44				
-	01/40		0.758	19.00		19.25				

Note: The millimeter dimensions are derived from the original inch dimensions.

OBJECTIVE FOR DEVELOPMENTAL TYPE

<u>Y-1536</u>*

PLANAR TRIODE

The Y-1536 is a metal-ceramic triode intended for use as a plate-pulsed oscillator or amplifier.

GENERAL

Electrical

Cathode - Coated Unipotential

Heater Characteristics and	Ra	tin	gs									
Heater Voltage, AC or DC #	•									6.3	8±0.3	Volts
Heater Current§. Direct Interelectrode Capac				•	•		•				1.05	Amperes
Grid to Plate: (g to p)).										2.2	
												pf
Output: $p to (h + k)$			1	•	•		•	•	•	•	1.3	pf
Output: p to $(h + k)$.	•	•	•		•	•	•		•		0.1	pf

Mechanical

Operating Position - Any

→ MAXIMUM RATINGS

Plate-Pulsed Oscillator or Ampli Cathode Heating Time, minimum. Peak Positive-Pulse Plate Supel									5	Seconds
The runse rule supply	VIC	1179	00							00001105
4 Microsecond Pulse Duration 1 Microsecond Pulse Duration									2500	Volts
									3000	Volts
Duty Factor of Plate Pulse# Plate Current	•		•					(0.004	1000
Average#	•		•						20	Milliampere
Negative Grid Voltage		•	•	•	•				5.0	Amperes
Average During Plate Pulse									100	
Grid Current	•	•	•	•	•	•		•	100	Volts
Average#										
Average During Plate Pulse . Plate Dissipation#.	•	•		•	•	•	•		6.0	Milliampere
Plate Dissipation#	*	•	•	•					1.5	Amperes
Plate Dissipation#.	•	•	•	•	•	•			30	Watts
Heater Positive with Respect t										
Heater Negative with Respect t	.0 (att	lode	е.					50	Volts
Heater Negative with Respect t	0 (ath	ode	Э.					50	Volts
Envelope Temperature at Hottest P	oir	it							250	C

Y-1536

MAXIMUM RATINGS (CONTINUED)

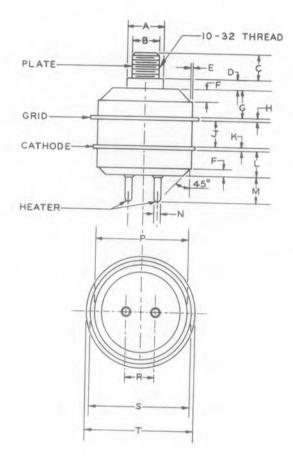
Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

\rightarrow CHARACTERISTICS AND TYPICAL OPERATION

Average Characteristics


Average ondreeter	_										400	Volts
Plate Voltage				+			•	•	•	*	. 400	Ohms
a 11 Ja Dias Pocietor												Othins
1 11 Firstion Factor												Ohms
Dista Desistance 2001	OXID	nare										Micromhos
muserenductance	3. 1.								•		00000	
Plate Current.		• •	•		•	•		+	•	•	. 60	Milliamperes
Plate-Pulsed Oscillate	or Se	ervic	е									
											1200	Megahertz
Frequency				-		7	1	1	1		. 6.3	Volts
The transmission in the												
D . Destar		1			+							Microseconds
D 1 D												Pulses per Second
												Volts
Peak Positive-Pulse S	upp1	y Vol	tag	ge.					•		2000	VOIES
D1 Aussept												Milliamperes
A									•		. 20	Amperes
Average During Pla	te P	ulse									. 5.0	Amperes
a 11 Aumont												Milliamperes
Auguran		2 2									. 4.0	
Average During Pla	te P	ulse								1.5	. 1.2	Amperes
TT F 1 Deven Autout												*****
A	-										. 12	Watts
Average During Pla	te F	ulse									. 3.0	Kilowatts
Average burning ine												

NOTES

- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- § Heater current of a bogey tube at Ef = 6.3 volts.
- # In any 5000 microsecond interval.
- Ø To be determined.

11-22-67 (B) Supersedes 9-15-67 (B)

Ref.	1	Inches	
	Minimum	Nominal	Maximum
A	0.247		0.253
В			0.190
C	0.130		0.170
D	0.070		0.090
E		0.005	
F	0.075		0.095
G	0.182		0.192
H	0.025		0.031
J	0.170		0.180
K	0.025		0.031
L	0.170		0.180
M	0.170		0.180
N	0.047		0.053
P	0.635		0.665
R	0.186		0.214
S	0.698		0.708
Т	0.748		0.758

OBJECTIVE FOR DEVELOPMENTAL TYPE

<u>Y-1537*</u>

PLANAR TRIODE

The Y-1537 is a metal-ceramic triode intended for grid-pulsed or plate-pulsed oscillator and amplifier service.

GENERAL

Electrical

**

1

Cathode - Coated Unipotential

Heater Characteristics and Ra	atir	igs									
Heater Voltage, AC or DC+			,							6.3±0.3	Volts
Direct Interelectrode Capacit	anc	es¶	•	•	•	•	•	•	•	. 0.5	Amperes
Grid to Plate: (g to p).		1.5								. 2.0	pf
Lupuc, B LU (II T K)											pf
Output: $p to (h + k)$.	•	•	•	*	•					0.055	pf

Mechanical

Operating Position - Any

→ MAXIMUM RATINGS

Grid-Pulsed Oscilla	tor	or	Amp	li	fier	c Se	rvi	ce	- A	bsc	lut	e-M	lax	imum Va	lues
Plate Voltage Plate Dissipation#.			•											1200	Volts
Plate Dissipation#. Peak Plate Current	•		•											10	Watts
out the state of t														-	Amperes
															Amperes
Duty Factor Pulse Duration	•	1	•	•	•	•	•	•	•					0.01	
Peak Heater-Cathode	Vol	tao			•		•	•			•	•	•	. 1	Microseconds
Heater Positive w Heater Negative w	vith	Re	spe	ct	to	Cat	hod	e.				•		50	Volts
Heater Negative w Envelope Temperature	at	Ho	spe	at	Doi	uat	nod	e.	•	•				50	Volts
. offereduce	aL	110	LLE.	SL	101	nc								250	C

<u>Y-1537</u>

MAXIMUM RATINGS (CONTINUED)

Plate-Pulsed Oscillator or Amplifier Service - Absolute-Maximum Values

Peak Positive-Pulse Plate Supply	Vc	lta	ge							17-14-0
A Missessond Pulse Duration				+	+			. 2	000	Volts
1 Migrocoord Pulse Duration									200	Volts
Discipation#					. 4				TO	Watts
n -1 Dista Current										Amperes
a 1 Guild Gurrant										Amperes
Duty Factor							•	0.	001	
Deals Heatox-Cathode Voltage									50	Volts
The Desitive with Respect	to	Cat	hod	le.					-	Volts
Heater Negative with Respect	to	Cat	hoc	1e.					50	
Envelope Temperature at Hottest	Po	int						•	250	C

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment. The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

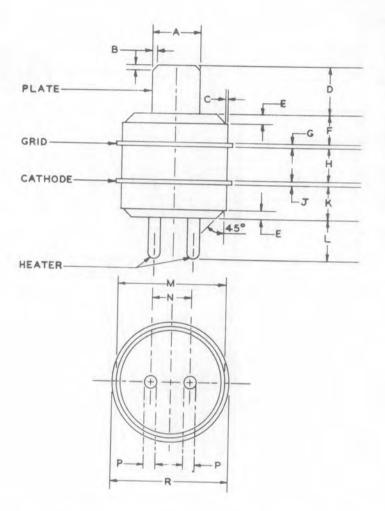
Average Characteristics

Peak Power Output . .

										. 200	Volts
Plate Voltage			. *		•					. 100	Ohms
Cathodo-Rine Registor										+ 100	OTIMO
1 liftestion Factor	 1.0									. 05	
m	 										Micromhos
Plate Current	100	2			2					. 17	Milliamperes
Plate Current	•		1	1		1					
Frequency	÷					+	•	•			Volts
Grid-Pulsed Radio-Frequency										. 1200	Megahertz
DC Plate Voltage										. 1000	
Peak Plate Current					+					. 1.2	Amperes Amperes
Peak Grid Current					+					+ 0.4	PPS
Pulse Repetition Frequency							+		•		Microseconds
Pulse Duration				+					+	. 0.5	
10100 000000						1.0				. 450	Watts

Plate-Pulsed Radio-Frequency Oscillator

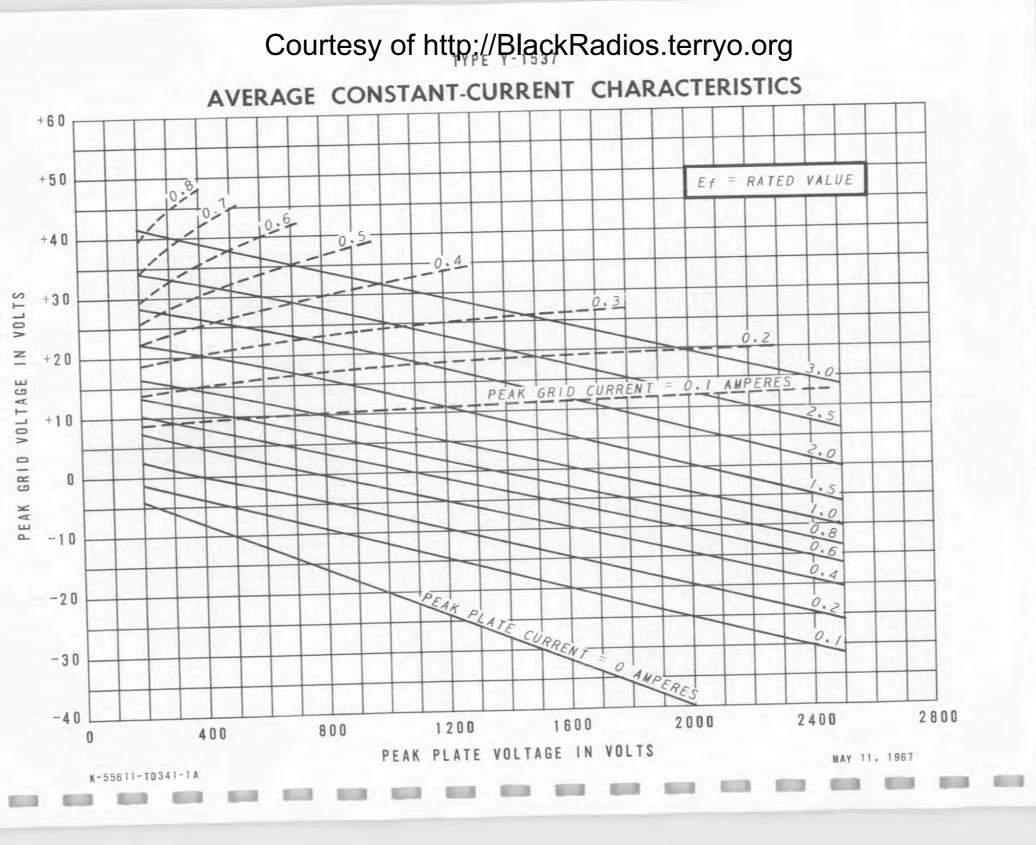
NOTES


- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- * The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.

§ Heater current of a bogey tube at Ef = 6.3 volts.

- ¶ Without external shield.
- # With adequate heat sink.
- A To be determined.

8-4-67 (B) Supersedes 3-1-67 (B)


1

l

0

0

Ref.	3	Inches	
	Minimum	Nominal	Maximum
A	0.245		0.255
В		0.030	
C		0.005	
D	0.245		0.255
E	0.040		0.060
F	0.145		0.155
G	0.025	1	0.031
H	0.167		0.177
J	0.025		0.031
K	0.170		0.180
L	0.170		0.180
M	0.535		0.565
N	0.185		0.215
P	0.047		0.053
R	0.598		0.608

OBJECTIVE FOR DEVELOPMENTAL TYPE

Y-1540*

PLANAR TRIODE

The Y-1540 is a high-mu triode of ceramic-and-metal planar construction primarily intended for use as a broadband radio-frequency amplifier.

GENERAL

Electrical

0

0

0

[

Cathode - Coated Unipotential

Heater Characteristics and Ratings		
Heater Voltage, AC or DC‡ Heater Current§ → Cathode Heating Time# Direct Interelectrode CapacitancesØ	6.3±0.3 0.4 5	Volts Amperes Seconds

Mechanical

Operating Position - Any

Absolute-Maximum Values

MAXIMUM RATINGS

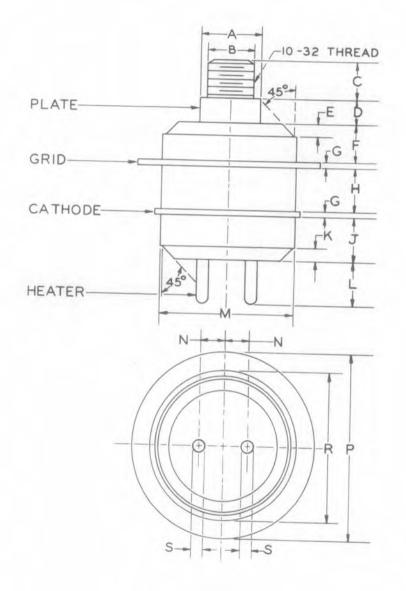
D1		
Plate Voltage Positive DC Grid Voltage	330	Volts
Negative DC Grid Voltage	0	Volts
Plate Dissipation¶	50	Volts
DC Cathode Current	30	Watts
Heater-Cathode Voltage	100	Milliamperes
Heater Positive with Respect to Cathode	50	Volts
Heater Negative with Respect to Cathode Grid Circuit Resistance	50	Volts
Envelope Terrent to a	ø	
Envelope Temperature at Hottest Point	Ø	

Y-1540

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment. The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION


Average Characteristics

00 Volts
.0 Volts
70 Ohms
25
00 Ohms
00 Micromhos
24 Milliamperes
-3 Volts
72002

- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- § Heater current of a bogey tube at Ef = 6.3 volts.
- # Time required for plate current to reach 80% of its steady-state value.
- Ø To be determined.

11-22-67 (B) Supersedes 4-19-65 (B)

Y-1540

0

Ref.	Inc	hes
Mer.	Minimum	Maximum
A	0.247	0.253
В	0.184	0.190
C	0.145	0.155
D	0.095	0.105
E	0.040	0.060
F	0.145	0.155
G	0.025	0.031
H	0.170	0.180
J	0.170	0.180
K	0.040	0.060
L	0.170	0.180
M	0.535	0.565
N	0.093	0.107
P	0.748	0.758
R	0.598	0.608
S	0.047	0.053

OBJECTIVE FOR DEVELOPMENTAL TYPE

<u>Y-1541*</u>

METAL-CERAMIC PLANAR TRIODE

The Y-1541 is a high-mu triode of ceramic and metal planar construction intended for use as a grid-pulsed oscillator or amplifier at frequencies up to 6000 megacycles.

A feature of the Y-1541 is rapid warm-up: the time required to reach a plate current level of 80% of the steady-state value is 5 seconds.

GENERAL

Electrical

0

[

0

Cathode - Coated Unipotential

Heater Characteristics and Ratings Heater Voltage, AC or DC‡ Heater Current§ → Cathode Heating Time¶ Direct Interelectrode Capacitances#	6.3±0.3 0.61 5	Volts Amperes Seconds
Grid to Plate: $(g \text{ to } p)$	1.5	pf
Input: $g \text{ to } (h + k)$	4.5	pf
Output: $p \text{ to } (h + k)$	0.045	pf

Mechanical

-

Operating Position - Any

See Outline Drawing for dimensions and electrical connections.

MAXIMUM RATINGS

Plate-Pulsed Oscillator or Amplifier Service - Absolute-Maximum Values

Peak Positive-Pulse Plate Supply Voltage	1500	Volts
Duty Factor of Plate Pulse∆** Pulse Duration	0.001	
and bulacion	2.0	Microseconds

Y-1541

MAXIMUM RATINGS (Continued)

Plate Current Average**	2.5	Milliamperes Amperes
Average During Plate Pulse‡‡		
Negative Grid Voltage Average During Plate Pulse	100	Volts
Grid Current	1.0	Milliamperes
Average**	1.0	Amperes
Average During Plate Pulse	20	Milliamperes
DC Cathode Current Plate Dissipation ^{‡‡}	6.5	Watts
Peak Heater-Cathode Voltage	50	Volts
Heater Positive with Respect to Cathode Heater Negative with Respect to Cathode	50	Volts
Envelope Temperature at Hottest Point	250	C

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

Average Characteristics		
	200	Volts
Plate Voltage	100	Ohms
Cathode-Bias Resistor	58	
Amplification Factor	2300	Ohms
Plate Resistance, approximate	25000	Micromhos
Transconductance	23	Milliamperes
Plate Current		
Grid Voltage, approximate	-5	Volts
Ib = 100 Microamperes		
Grid-Pulsed Oscillator Service		
	4300	Megacycles
Frequency	6.3	Volts
Heater	0.001	
Duty Factor	1.0	Microseconds
Pulse Duration	1000	Pulses per Second
Pulse Repetition Rate	1500	Volts
Peak Positive-Pulse Plate Supply Voltage	1900	12000
Plate Current	1.5	Milliamperes
Average	1.5	Amperes
Average During Plate Pulse		
Grid Current	Ø	Milliamperes
Average	Ø	Amperes
Average During Plate Pulse		
Useful Power Output	0.6	Watts
Average	0.6	Kilowatts
Average During Plate Pulse		

OBJECTIVE FOR DEVELOPMENTAL TYPE

<u>Y-1541*</u>

METAL-CERAMIC PLANAR TRIODE

The Y-1541 is a high-mu triode of ceramic and metal planar construction intended for use as a grid-pulsed oscillator or amplifier at frequencies up to 6000 megacycles.

A feature of the Y-1541 is rapid warm-up: the time required to reach a plate current level of 80% of the steady-state value is 5 seconds.

GENERAL

Electrical

0

Cathode - Coated Unipotential

Heater Characteristics and Ratings Heater Voltage, AC or DC‡ Heater Current§ → Cathode Heating Time¶ Direct Interelectrode Capacitances#	6.3±0.3 0.61 5	Volts Amperes Seconds
Grid to Plate: (g to p)	1.5	pf
Input: g to (h + k)	4.5	pf
Output: p to (h + k)	0.045	pf

Mechanical

Operating Position - Any

See Outline Drawing for dimensions and electrical connections.

MAXIMUM RATINGS

Plate-Pulsed Oscillator or Amplifier Service - Absolute-Maximum Values

Peak Positive-Pulse Plate Supply Voltage Duty Factor of Plate Pulse∆**	1500	Volts
Pulse Duration	0.001	
Turse buracion	2.0	Microseconds

Y-1541

MAXIMUM RATINGS (Continued)

Plate Current Average** Average During Plate Pulse‡‡	2.5	Milliamperes Amperes
Negative Grid Voltage Average During Plate Pulse	100	Volts
Grid Current Average** Average During Plate Pulse DC Cathode Current Plate Dissipation‡‡	1.0 1.0 20 6.5	Milliamperes Amperes Milliamperes Watts
Peak Heater-Cathode Voltage Heater Positive with Respect to Cathode Heater Negative with Respect to Cathode Envelope Temperature at Hottest Point	50 50 250	Volts Volts C

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

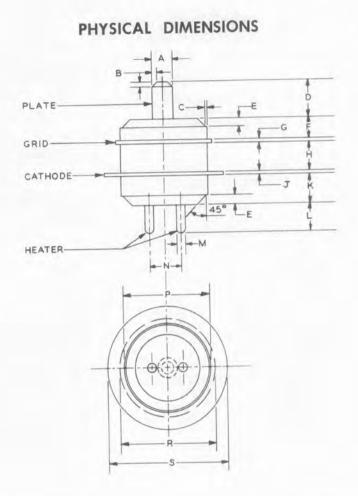
The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

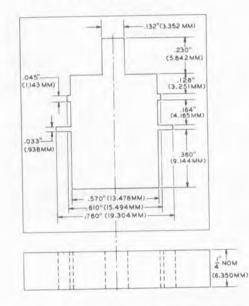
CHARACTERISTICS AND TYPICAL OPERATION

A CONTRACT OF A		
Average Characteristics	200	Volts
Plate Voltage	200	Ohms
Cathode-Bias Resistor	100	Onms
Amplification Factor	58	
Plate Resistance, approximate	2300	Ohms
Transconductance	25000	Micromhos
Plate Current	23	Milliamperes
Grid Voltage, approximate	-5	Volts
Ib = 100 Microamperes		
→ Grid-Pulsed Oscillator Service		
	4300	Megacycles
Frequency	6.3	Volts
Heater	0.001	
Duty Factor	1.0	Microseconds
Pulse Duration	1000	Pulses per Second
Pulse Repetition Rate	1500	Volts
Peak Positive-Pulse Plate Supply Voltage	1500	VOLUD
Plate Current	1.5	Milliamperes
Average	1.5	Amperes
Average During Plate Pulse		
Grid Current	ø	Milliamperes
Average	Ø	Amperes
Average During Plate Pulse		
Useful Power Output	0.6	Watts
Average	0.6	Kilowatts
Average During Plate Pulse	5.0	1007 0 2 C 2 C 2 C

Y-1541


- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- § Heater current of a bogey tube at Ef = 6.3 volts.
- Time required for plate current to reach 80% of its steady-state value.
- # Measured using a grounded adapter that provides shielding between external terminals of tube.
- △ Applications with a duty factor greater than 0.001 should be referred to your General Electric tube sales representative for recommendation.
- ** In any 5000 microsecond interval.

I


The regulation and/or plate-supply impedance must be such as to limit the peak current, with the tube considered a short circuit, to a maximum of 25 amperes.

> 11-22-67 (B) Supersedes 8-26-65 (B)

Y-1541

ALIGNMENT GAUGE

Note: Gauge tolerances are ±0.001 inches or ±0.025 millimeters, unless otherwise indicated.

		INCHES		M	LLIMETERS	
Ref.	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum
	0.122		0.128	3.099		3.251
A	0.122	0.030			0.76	
В		0.005			0.13	
С	0.000	0.005	0.230	5.59		5.84
D	0.220		0.060	1.02		1.52
E	0.040			3.05		3.30
F	0.120		0.130	0.635	-	0.787
G	0.025		0.031			4.50
Н	0.167		0.177	4.24		0.787
J	0.025		0.031	0.635		4.57
K	0.170		0.180	4.32		
L	0.170		0.180	4.32		4.57
M	0.047		0.053	1.194		1.346
	0.185		0.215	4.70		5.46
N			0.565	13.59		14.35
P	0.535	-	0.608	15.19		15.44
R	0.598		0.758	19.00		19.25
S	0.748		0.750	17.00		

Note: The millimeter dimensions are derived from the original inch dimensions.

OBJECTIVE FOR DEVELOPMENTAL TYPE

Y-1549*

METAL-CERAMIC TRIODE

For Grid-Pulsed Oscillator or Amplifier Applications

The Y-1549 is a triode of ceramic and metal planar construction intended for use as a grid-pulsed oscillator or amplifier.

GENERAL

Electrical

1

Cathode - Coated Unipotential

Heater Heater	Characteristics and Ratings Voltage, AC or DC [‡]		
→ Heater	Current§	6.3±0.3	Volts
	Interelectrode CapacitancesØ	0.55	Amperes

Mechanical

Operating Position - Any

MAXIMUM RATINGS

Grid-Pulsed Oscillator or Amplifier Service - Absolute-Maximum Values

Plate Voltage Plate Dissipation Duty Factor of Grid Pulse DC Cathode Current Peak Cathode Current Heater-Cathode Voltage	1500 6.5 Ø Ø	Volts Watts
Heater Positive with Respect to Cathode	100	Volts
Heater Negative with Respect to Cathode	100	Volts
Envelope Temperature at Hottest Point	250	C

Y-1549

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

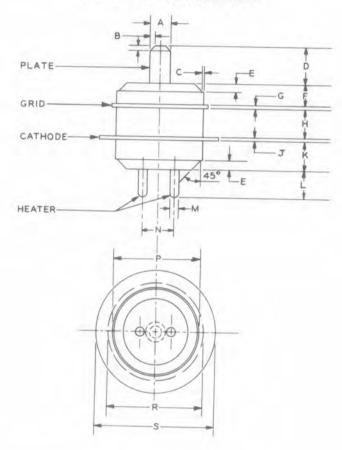
Average CharacteristicsØ

→ Grid-Pulsed Oscillator

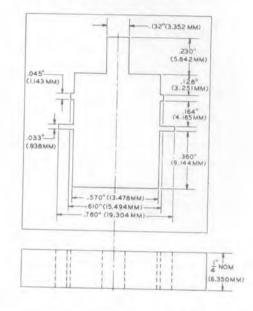
	at so when	and the second se
Frequency	1200	Megacycles
CHARTER AND	0.001	
Duty Factor	1.0	Microseconds
Pulse Width	1500	Volts
Plate Voltage	-80	Volts
Grid Voltage	ø	
Peak Grid Voltage		
Plate Current	1.5	Milliamperes
Average	1.5	Amperes
Average During Grid Pulse	Ø	imporos
Grid Current	¹ 0	
Useful Power Output	1.0	Watts
Average	1.0	Kilowatts
Average During Grid Pulse	1.0	KIIOWALLS
		N
Frequency	4300	Megacycles
Duty Factor	0.001	
Pulse Width	1.0	Microseconds
	1500	Volts
Plate Voltage	ø	
Grid Voltage	Ø	
Peak Grid Voltage		
Plate Current	1.5	Milliamperes
Average	1.5	Amperes
Average During Grid Pulse	Ø	
Grid Current	P	
Useful Power Output	0.6	Watts
Average	600	Watts
Average During Grid Pulse	000	IT CA C C C

Publication of these data does not obligate the General Electric Company * to manufacture a tube with these characteristics.

The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.


Heater current of a bogey tube at Ef = 6.3 volts. ê

To be determined. Ø


11-22-67 (B) Supersedes 5-11-65 (B)

Y-1549

PHYSICAL DIMENSIONS

ALIGNMENT GAUGE

Note: Gauge tolerances are ±0.001 inches or ±0.025 millimeters, unless otherwise indicated.

Ref.		INCHES		MILLIMETERS							
	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum					
Α	0.122		0.128	3.099		3.251					
В		0.030			0.76	5.251					
С		0.005			0.13						
D	0.220		0.230	5.59	0.15	5.84					
E	0.040		0.060	1.02		1.52					
F	0.120		0.130	3.05		3.30					
G	0.025		0.031	0.635		0.787					
H	0.167		0.177	4.24		4.50					
J	0.025		0.031	0.635		0.787					
K	0.170		0.180	4.32		4.57					
L	0.170		0.180	4.32		4.57					
M	0.047		0.053	1.194							
N	0.185		0.215	4.70		1.346					
P	0.535		0.565	13.59		5.46					
R	0.598		0.608			14.35					
S	0.748		0.008	15.19		15.44					
-	01740		0.758	19.00		19.25					

Note: The millimeter dimensions are derived from the original inch dimensions.

OBJECTIVE FOR DEVELOPMENTAL TYPE

Y-1600*

PLANAR TRIODE

The Y-1600 is a triode of ceramic and metal planar construction intended for use as a CW oscillator at frequencies up to 3000 megacycles. Features of the Y-1600 are small size and high plate dissipation capability.

GENERAL

Electrical

1

1

0

0

Cathode - Coated Unipotential

Heater Characteristics and	Rat	ing	s								
Heater Voltage, AC or DC‡. Heater Currents										6.3±0.3	Volts
Direct Interelectrode Capac	ita	nce	• 9¶	*	•	•	•	•	•	. 0.61	Amperes
Grid to Plate: (g to p)										. 1.65	pf
										1. 0	pf
Output: $p to (h + k)$.	•		٠	•	•					. 0.045	pf

Mechanical

Operating Position - Any

MAXIMUM RATINGS

Absolute-Maximum Values

CW Oscillator Service

Plate Voltage.																
Plate Voltage. Plate Current.	•		•		•	•									400	Volts
															10 At 10	Milliamperes
					-										-	
																Milliamperes
Cathode Current Plate Dissipatio	mt						•			•		. •			160	Milliamperes
Peak Heater-Cath	node	e V	olt	age	•			•		•	•			•	. 30	Watts
Heater Positi	ive	wi	th	Res	Dec	t t	o C	ath	ode						50	
Heater Negati	ive	wi	th	Reci	Dec	- +.	0 0	ath	-1-	•	•	•	*		. 50	Volts
Heater Negati Envelope Tempera	+ 111		at 1	Uat	PCC	D		acn	ode		•				. 50	Volts
Envelope Tempera	LUI	lea	aL .	HOL	ces	C P(01n	t.							250	C

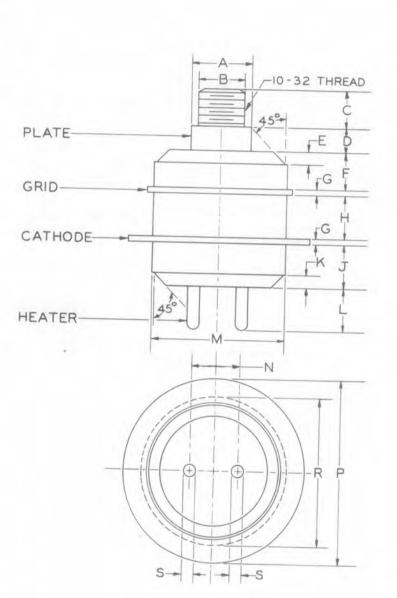
<u>Y-1600</u>

MAXIMUM RATINGS (Continued)

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment. The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION


Average Characteristics

						 				4		300	Volts	1
Plate Voltage					-							20	Ohms	
Cathode-Bias Resistor								×.	1					
Amplification Factor									+			1580	Ohms	
Plate Resistance, app	rox	ima	te							•	1.	1300	Micromhos	-
→ Transconductance							4.1		+			38000	and be a state of the	
Plate Current						 1.1						93	Milliamperes	
														5
CW Oscillator Service												2300	Megacycles	
Frequency	•			+		1			+			300	Volts	
Plate Voltage					•							135	Milliamperes	
									•					÷
Plate Current													Milliamperes	1
Plate Current Grid Current Power Output, approx									+	•	•	25 10	Milliamperes Watts	

NOTES

- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- § Heater current of a bogey tube at Ef = 6.3 volts.
- Measured using a grounded adapter that provides shielding between external terminals of tube.
- # With adequate heat sink attached to threaded plate stud.

11-22-67 (B) Supersedes 1-18-67 (B)

[

Ref.	Inches											
MCI.	Minimum	Maximum										
A	0.247	0.253										
В	0.184	0.190										
C	0.145	0.155										
D	0.105	0.115										
E	0.040	0.060										
F	0.145	0.155										
G	0.025	0.031										
H	0.167	0.177										
J	0.170	0.180										
K	0.040	0.060										
L	0.170	0.180										
M	0.535	0.565										
N	0.186	0.214										
P	0.748	0.758										
R	0.598	0.608										
S	0.047	0.053										

<u>Y-1600</u>

OBJECTIVE FOR DEVELOPMENTAL TYPE

Y-1623*

PLANAR TRIODE

The Y-1623 is a metal-ceramic triode intended for use as a plate-pulsed oscillator or amplifier.

GENERAL

Electrical

Cathode - Coated Unipotential

F	leater Characteristics an	nd I	Rat	ing	S							
ł	leater Voltage, AC or DC:	* .							6	5.3±0.3	Volts	
1	leaver ourrenty				1.0					. 0.4	Amperes	
Ι)irect Interelectrode Cap	pac	ita	nce	S				-		imperes	
	Grid to Plate: (g to	p)						i		. 1.7	pf	
	Input: $g to (n + k)$		1.1			1.4	 1.0			60	pf	
	Output: $p to (h + k)$	•	•	•	•	•	÷			0.018	pf	

Mechanical

Operating Position - Any

→ MAXIMUM RATINGS

Plate-Pulsed Oscillator or Amplifier Service - Absolute-Maximum Values

Cathode Heating Time, minimum										10	
Peak Positive-Pulse Plate Supp	1.	Vol	+ 20		•	•		•		60	Seconds
4 Microsecond Pulco Duratio	± y	VUI	Lag	se							
4 Microsecond Pulse Duratio	n.	•		•			•			1500	Volts
1 Microsecond Pulse Duratio	n.									2000	Volts
Duty Factor of Plate Pulse# . Plate Current		•	•						0	.004	
Average#										2.0	Milliamperes
a sai the trace fulse										0.5	Amperes
Southe Grid Vollage											ampereo
Average During Plate Pulse Grid Current										50	Volts
											VOILS
Average During Plate Puls										0.0	and the second second
Average During Plate Pulse	•		•		•		•		•	0.8	Milliamperes
Average During Plate Pulse Plate Dissipation#		•	•	•					•	0.2	Amperes
Plate Dissipation#		•								6.5	Watts
and weater outlide voilage											
Heater Positive with Respect	t t	o C.	ath	ode						50	Volts
Meddel Megalive with Respect		0 (:	ath	aha						FO	Volts
Envelope Temperature at Hottest	P	oin	t.				-		•	250	
	_									200	C

<u>Y-1623</u>

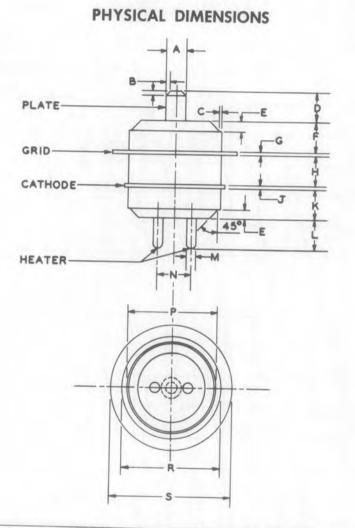
MAXIMUM RATINGS (CONTINUED)

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment. The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

Average Characteristics

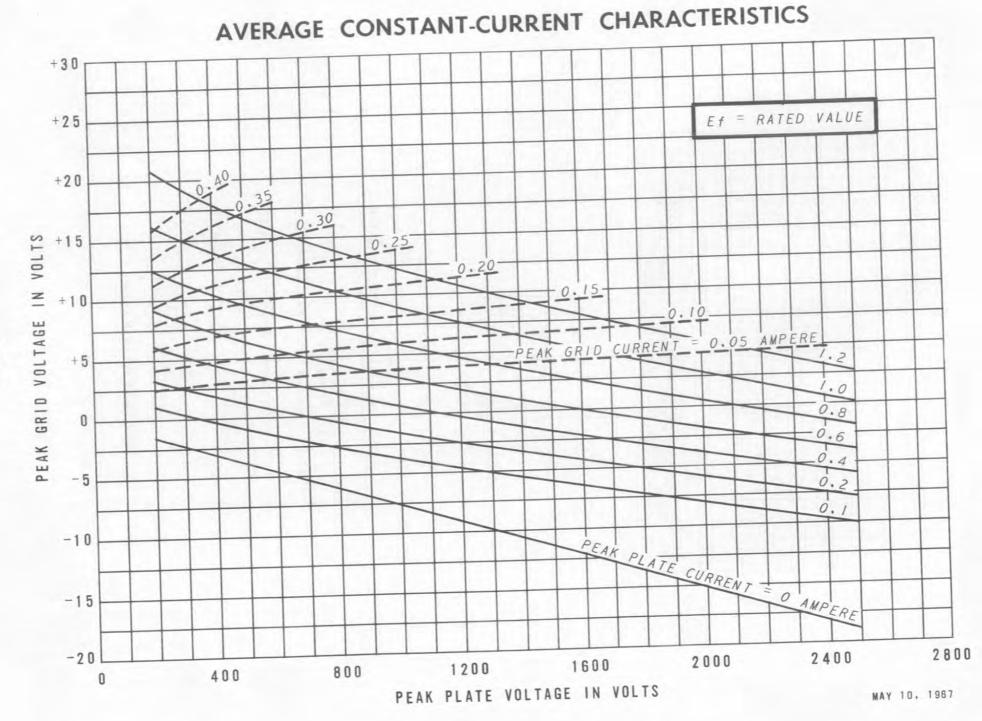

Average Characteristics														11.21
Plate Voltage												200		Volts
Grid Voltage												+6.0		Volts
a 11 1 Die Desister						-	1.4					210		Ohms
Amplification Factor . Plate Resistance, approx	•						1	10	1			225	i.	
Amplification Factor .		*							1	-	1	4500	i.	Ohms
Plate Resistance, approx	Ima	Le						÷.				50000		Micromhos
Transconductance												20000		Milliamperes
Plate Current.				+		+					•			III I I I I I I I I I I I I I I I I I
Crid Voltage approximat	e													Volts
Ib = 100 Microamperes			+			•	•				•)	VOILS
Plate-Pulsed Oscillator														
Frequency												1200)	Megahertz
Frequency	12				2							6.1	3	Volts
Heater Voltage					-							0.004	4	
Duty Factor Pulse Duration						-						4.1	C	Microseconds
Pulse Duration Pulse Repetition Rate .	. *			•		•	1		1.1			100)	Pulses per Second
Pulse Repetition Rate .	.*								1		15	125	0	Volts
Peak Positive-Pulse Supp	ly	Vol	Itag	je.		•						12.3		10200
Plate Current												1	6	Milliamperes
Average.												0	1.	Amperes
Average During Plate	Pul	lse	•		+								+	Amperes
Crid Current														Milliamperes
Average				+				•		+		• •	ø	Amperes
Average During Plate	Pu	lse								1.1	1		Ø	Amperes
an C 1 Days Output													4	
Amerage								0					Ø	Watts
Average During Plate	Pu	1se							•				Ø	Kilowatts

NOTES

- Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- * The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- § Heater current of a bogey tube at Ef = 6.3 volts.
- # In any 5000 microsecond interval.
- Ø To be determined.

5-10-67 (B) Supersedes 3-1-67 (B)

<u>Y-1623</u>



1

I

Ref.		INCHES		MILLIMETERS							
	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum					
A	0.122		0.128	3.099		3.251					
В		0.030			0.76	5.251					
C		0.005	-		0.13						
D	0.170		0.180	4.32	0.15	/ 53					
E	0.040		0.060	1.02		4.57					
F	0.170		0.180	4.32		1.52					
G	0.025		0.031	0.635		4.57					
Н	0.167		0.177			0.787					
J	0.025		0.031	4.24		4.50					
K	0.170			0.635		0.787					
L	0.170		0.180	4.32		4.57					
M	0.047		0.180	4.32		4.57					
N			0.053	1.194		1.346					
P	0.185		0.215	4.70		5.46					
-	0.535		0.565	13.59		14.35					
R	0.598		0.608	15.19		15.44					
S	0.748		0.758	19.00		19.25					

Note: The millimeter dimensions are derived from the original inch dimensions.

<u>Y-1623</u>

OBJECTIVE FOR DEVELOPMENTAL TYPE

<u>Y-1636</u>*

PLANAR TRIODE

The Y-1636 is a metal-ceramic triode intended for use as a plate-pulsed and grid-pulsed oscillator or amplifier.

GENERAL

Electrical

0

1

Cathode - Coated Unipotential

Heat	er Cha	racterist	tics an	nd R	lati	ngs									
-> Hoat	or Cur	tage, AC	OL DC	+ •	•		•	•				6	3±0.3	Volts	
Dire	ct Int	erelectro	de Car	• paci	tan	·	•	•	•	•	•		1.2	Amperes	
G	rid to	Plate:	(g to	D)									2.8	pf	
table 4	spue.	5 40 (11	TKI										-	pf	
	r	P 00 (1	(+ k)	•	•	•	•	•					0.05	pf	
Mach	1														

Mechanical

Operating Position - Any

MAXIMUM RATINGS

Cathode Heating Time, minimum Plate Supply Voltage	n¶	•								5	Seconds
											Volts
J										0 0 1	
Plate Current	•	•	•	•	•		•	•	•	1.0	Microsecond
Average#. Average During Grid Pulse										50	Milliampere
Negative Grid Voltage	•		*		•	•				5.0	Amperes
Average During Grid Pulse Grid Current	•		•							100	Volts
Average#. Average During Grid Bulco										20	Milliamperes
											Amperes
Plate Dissipation Peak Heater-Cathode Voltage	•	•	•	•	•	•	•	•		50	Watts
Heater Positive with Respe	ct	to	Cat	hod	e					50	Volts
ACCELLINE WICH RASDA	ot	to	Cat	had	-						Volts
Envelope Temperature at Hotte	st	Poi	nt							250	С

¥-1636

MAXIMUM RATINGS (CONTINUED)

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

Average Characteristics

Average onerer								400	Volts
Plate Voltage	•	+						. 33	Ohms
Cathada Biac Recistor								1. T. T. T.	
Analifiantion Factor									Ohms
Dista Desistance approximate									Micromhos
Managenductance									Milliamperes
Plate Current.	•	+	•	•	*	*		10	niiiidmporoo
→ Grid-Pulsed Oscillator Service									
Frequency								. 2000	Megacycles
Frequency								. 6.3	Volts
Heater Voltage								0.0075	
Duty Factor	+			1		1	1	0.2	Microseconds
D 1 Dunation									Pulses per Second
D 1 Depotition Rate			+						Volts
Plate Voltage	•					+		. 1500	
D1									Milliamperes
Average.						1	1.5	. 3.0	Amperes
Average During Grid Pulse.									
Grid Current								1.2	Milliamperes
Average.					•	+		. 1.2	Amperes
Average During Grid Pulse.							*	. 1.2	Imperes
C 1 Decent Output									Watts
Average.		+						1.0	Kilowatts
Average During Grid Pulse.		+		•	•	•	+	. 1.0	

NOTES

- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- * The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- S Heater current of a bogey tube at Ef = 6.3 volts.
- # In any 5000 microsecond interval.
- Time required for plate current to reach 80% of its steady-state value.
- ¢ With adequate heat sink attached to threaded plate stud.
- Ø To be determined.

11-22-67 (B) Supersedes 12-8-66 (B)

I

Ref.		Inches	
	Minimum	Nominal	Maximum
A	0.387		0.393
В			0.318
C	0.240		0.260
D	0.095		0.105
E		0.005	0.105
F	0.040		0.060
G	0.182		0.192
H	0.025		0.031
J	0.169		0.179
K	0.025		0.031
L	0.170		0.180
M	0.170		
N	0.047		0.180
P	0.635		0.053
R	0.186		0.665
S	0.698		0.214
T			0.708
T	0.748		0.758

OBJECTIVE FOR DEVELOPMENTAL TYPE

<u>Y-1641*</u>

METAL-CERAMIC TRIODE

For UHF Oscillator and Power Amplifier Applications

The Y-1641 is a high-mu triode of ceramic-and-metal planar construction intended for use as an oscillator or radio-frequency power amplifier in the ultra-highfrequency range. The Y-1641 is especially suited for use where unfavorable conditions of mechanical shock, mechanical vibration, and nuclear radiation are encountered.

GENERAL

Electrical

1

0

Cathode - Coated Unipotential

Heater Characteristics and Ratings

Heater Voltage, AC or Heater Currents	DC‡										6.3±0.3	Volts
and the out tetter											0 1 -	
Direct Interelectrode	Capacita	ince	s¶	•		•		•	•	٠	• • 5	Seconds
Grid to Plate: (g	to n)						÷				. 1.2	pf
	N										1 5	~
	N A A										0 01	
Heater to Cathode:	(II LO K	0.			•						. 1.4	pf

Mechanical

Operating Position - Any

MAXIMUM RATINGS

Absolute-Maximum Values

Plate Voltage.			1.1								222	
Positive DC Grid Voltag			÷.,	•	• •	•	•		•		250	Volts
												Volts
												Volts
DC Grid Current DC Cathode Current	*	•	•	•	• •						2.2	Milliamperes
DC Cathode Current Peak Cathode Current			•		• •						11	Milliamperes
Heater-Cathode Voltage	•	•	•	•	5 E		•		. •		40	Milliamperes
Heater Positive with	Res	pect	t to	o Ca	thode						50	Volts
												Volts
Grid Circuit Resistance Envelope Temperature at	Tak		•		* *	•				1	0000	Ohms
remperature at	HOL	test	Po	oint	#F						250	C

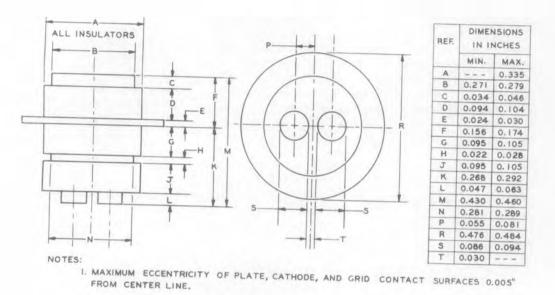
<u>Y-1641</u>

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

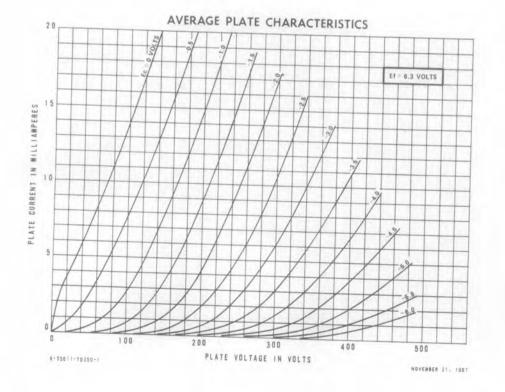
The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment. The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

TAL OPPORTON

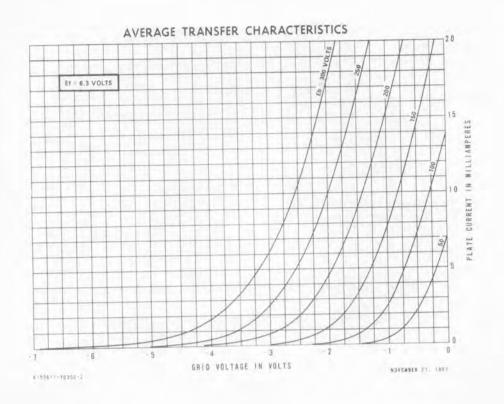
CHARACTERIS	LTOD MUD	TITTOTT	
the second se			

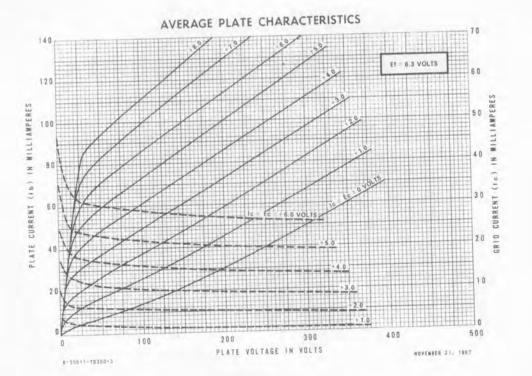

Average Characteri	sti	CS												
												100	150	Volts
Plate Voltage				•								. 0		Volts
Grid Voltage	. * .		•		•								82	Ohms
Cathode-Bias Resis	tor			•	•			•		۰.			95	
* Amplification Fact	or	+				+	•				•		10500	Micromhos
Transconductance			+					+			•	11500	10,000	Milliamperes
→ Plate Current			•		+	•		•		•	*	8.0	10	minimpered
UHF Oscillator Ser	vic	e												
Plate Voltage									1.1	1.		150	150	Volts
Plate voltage						1						1000	1000	Ohms
Grid Resistor												8.0	8.0	Milliamperes
Plate Current									*			2.0	2.0	Milliamperes
Grid Current						*			•			450	1200	Megacycles
Frequency			+					+	*				300	Milliwatts
Power Output, app	roxi	imat	e.		+		•			•		450	500	

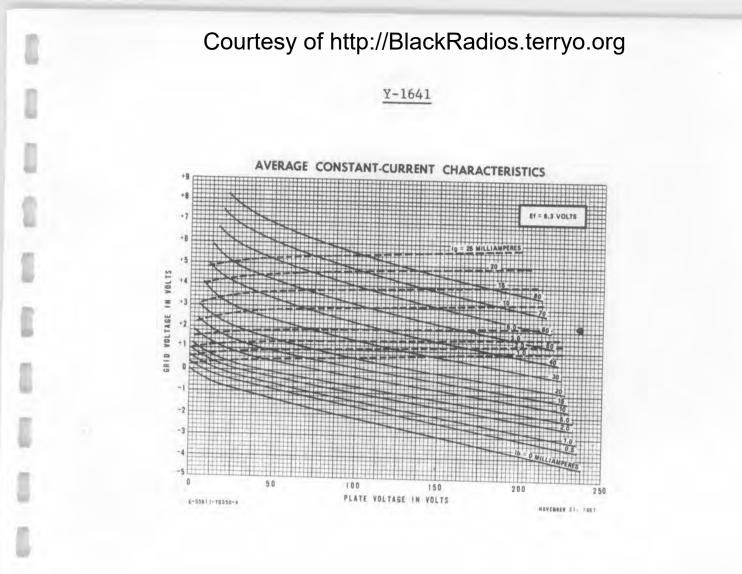
NOTES


- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- § Heater current of a bogey tube at Ef = 6.3 volts.
- Measured using a grounded adapter that provides shielding between external terminals of tube.
- # Operation below the rated maximum envelope temperature is recommended for applications requiring the longest possible tube life. The Y-1641 is also capable of operation at envelope temperatures much higher than the rated maximum values. For specific recommendations concerning higher temperature operation, contact your General Electric tube sales representative.
- ¢ Time required for plate current to reach 80% of its steady-state value.
- Ø To be determined.

11-22-67 (B) Supersedes 11-11-66 (B)






2. MAXIMUM ECCENTRICITY OF INSULATORS 0.010" FROM CENTER LINE,

<u>Y-1641</u>

OBJECTIVE FOR DEVELOPMENTAL TYPE

Y-1730*

METAL-CERAMIC TRIODE

The Y-1730 is a high-mu triode of ceramic-and-metal planar construction primarily intended for use as an oscillator or radio-frequency power amplifier.

GENERAL

Electrical

0

Cathode - Coated Unipotential

Heater Characteristics and Rati	ngs										
Heater Voltage, AC or DC±									6.3	±0.3	Volts
· · · · · · · · · · · · · · · · ·										0 -	Amperes
Direct Interelectrode Capacitan	· est	•	•	•	•	÷	•	•		. 5	Seconds
Grid to Plate: (g to p).										. Ø	pf
											pf
Output: p to $(h + k)$. Heater to Cathode: $(h$ to $k)$	•	•			•					. Ø	pf
Heater to Cathode: (h to k)	•	•	•	•		•	٠		•	- Ø	pf

Mechanical

Operating Position - Any

(See Outline Drawing for dimensions and electrical connections.)

MAXIMUM RATINGS

Absolute-Maximum Values

Plate Voltage							1.1						220	
→ Plate Dissipation							•						330	Volts
→ Plate Dissipation DC Grid Current.			•		•		•	•					6.5	Watts
														Milliamperes
														Milliamperes
Heater-Cathode Voltage			•	•		•	•		•	•			120	Milliamperes
Heater Positive with	Re	spe	ct	to	Cat	hod	e.						50	Volts
Grid-Circuit Resistance	ne	spe	CL	LO	Cat	nod	e.						50	Volts
With Fixed Bias With Cathode Bias . Envelope Temperature at												0	.025	Megohms
													0.1	Megohms
Envelope Temperature at	Ho	ttes	st	Poi	Int						1.1		250	C

Y-1730

MAXIMUM RATINGS (CONTINUED)

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of all other electron devices in the equipment. The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

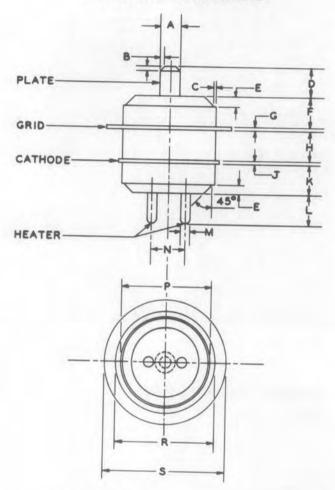
CHARACTERISTICS AND TYPICAL OPERATION

Average Characteristics

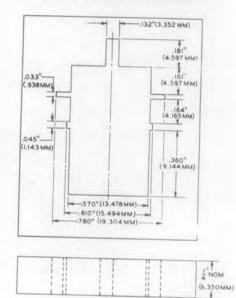
Average onarace														. 200	Volts
Plate Voltage.												•			Ohms
Cathode-Bias Re	sist	or												. 47	Offins
Amplification F	acto	or												. 100	
Plate Resistanc		nni	·ov	ima	te	1					1.1			2500	Ohms
Place Resistanc	e, .	*ÅÅ	. OA.	Lunes										40000	Micromhos
Transconductanc	e.													. 25	Milliamperes
Plate Current.															CHINE COMPANY
Grid Voltage, a Ib = 100 Mic		owin	mat	a											Volts
UHF Oscillator	Ser	vic	e												S
										12	1.2			. 400	Megacycles
Frequency														. 300	Volts
Plate Voltage.		1		•		•			*					1500	Ohms
Grid Resistor.							•							TT T T T	Milliamperes
Plate Current.								. +				•	•	. 25	Milliamperes
Grid Current, a	appr	oxi	mat	e.	+						+			. 5	Watts
														 	nuc co

NOTES

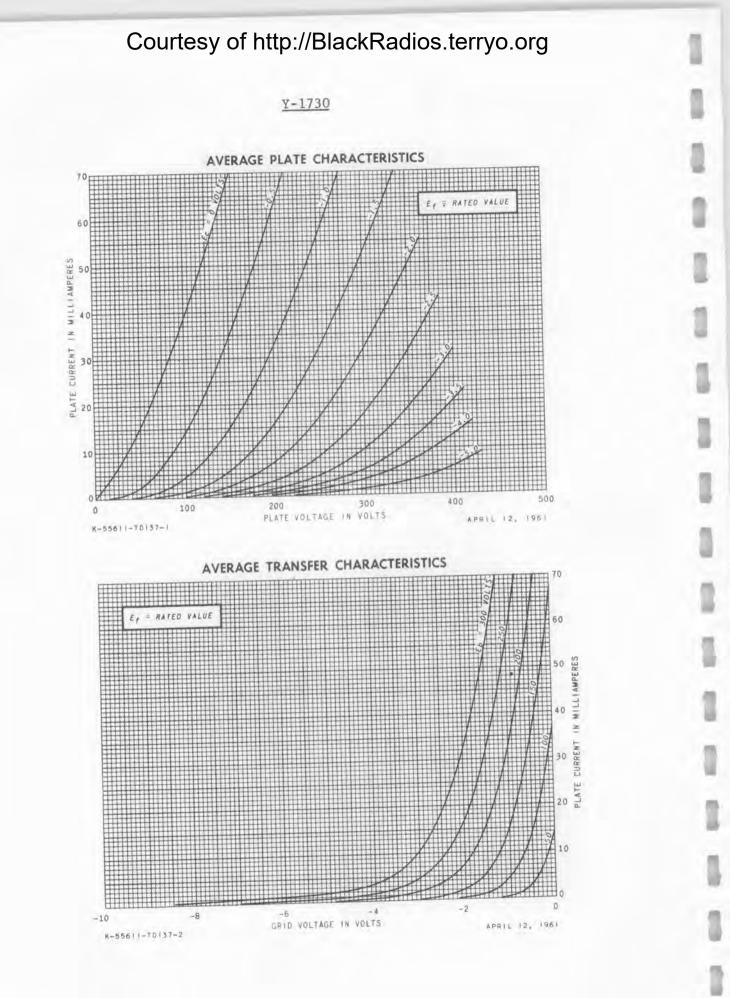
- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- § Heater current of a bogey tube at Ef = 6.3 volts.
- Time required for plate current to reach 80% of its steady-state value.
- # Without external shield.

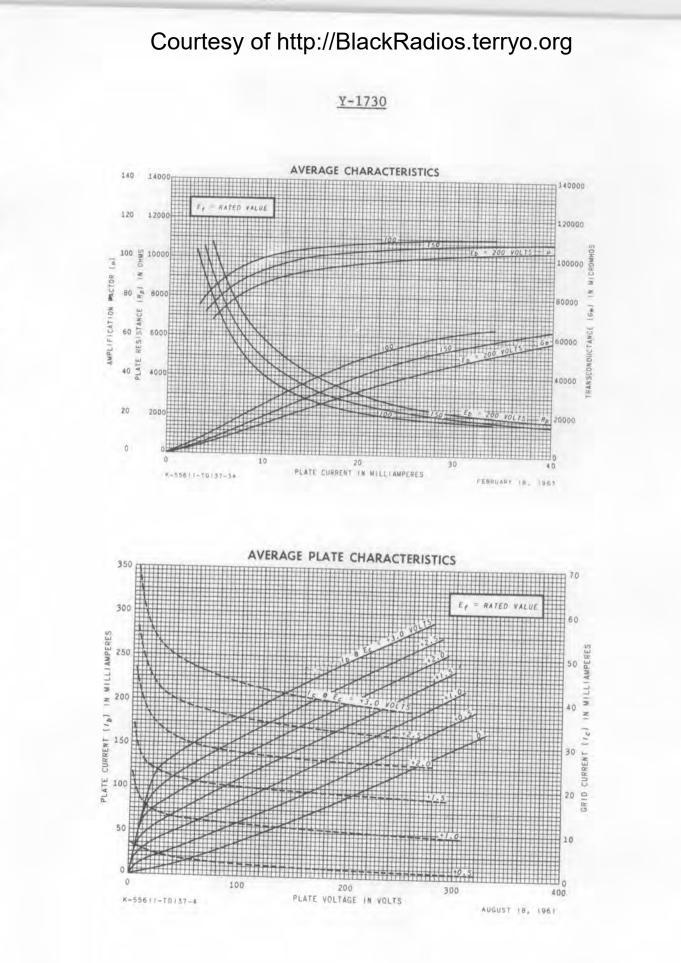

Power Output, approximate

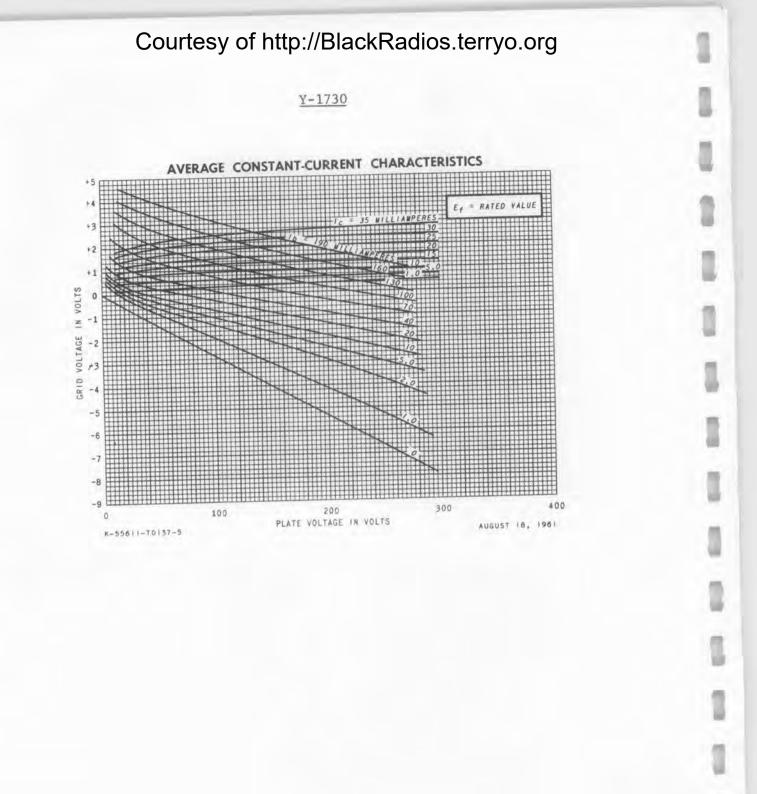
Ø To be determined.


11-22-67 (B) Supersedes 8-1-67 (B)

PHYSICAL DIMENSIONS


ALIGNMENT GAUGE




Note: Tolerances are ±0.001 inches or ±0.025 millimeters, unless otherwise indicated.

Ref.		INCHES		M	ILLIMETERS	6
	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum
A	0.122		0.128	3.099	TO MALINA L	3.251
В		0.030		5.077	0.76	3.231
C		0.005	-		0.13	
D	0.170		0.180	4.32	0.15	
E	0.040		0.060	1.02		4.57
F	0.165		0.175			1.52
G	0.025			4.19		4.45
H	0.167		0.031	0.635		0.787
J	0.025		0.177	4.24		4.50
K			0.031	0.635		0.787
L	0.170		0.180	4.32		4.57
	0.170		0.180	4.32		4.57
M	0.047		0.053	1.194		1.346
N	0.185		0.215	4.70		5.46
P	0.535		0.565	13.59		
R	0.598		0.608	15.19		14.35
S	0.748		0.758			15.44
	51.40		0.758	19.00		19.25

Note: The millimeter dimensions are derived from the original inch dimensions.

TUBE DEPARTMENT GENERAL C ELECTRIC Owensboro, Kentucky

OBJECTIVE FOR DEVELOPMENTAL TYPE

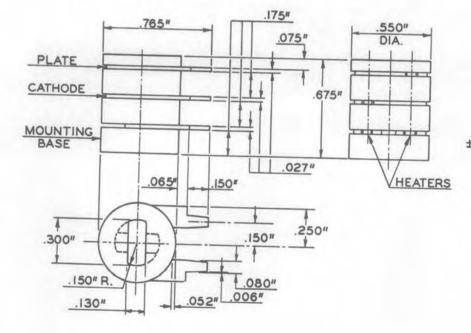
Z-2689*

PLANAR DIODE

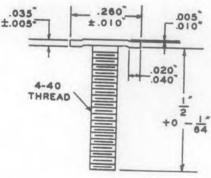
The Z-2689 is a cathode-type diode of ceramic and metal planar construction intended for use as a low-current rectifier.

GENERAL

Electrical


Cathode - Coated Unipotential


Heater Characteristics and Ratings Heater Voltage, AC or DC+ Heater Current‡ Direct Interelectrode Capacitances§	6.3±0.6 0.4	Volts Amperes
Plate to Cathode Heater to Cathode	2.5	pf pf


Mechanical

Operating Position - Any

→ Outline Drawing

Z-2689

MAXIMUM RATINGS

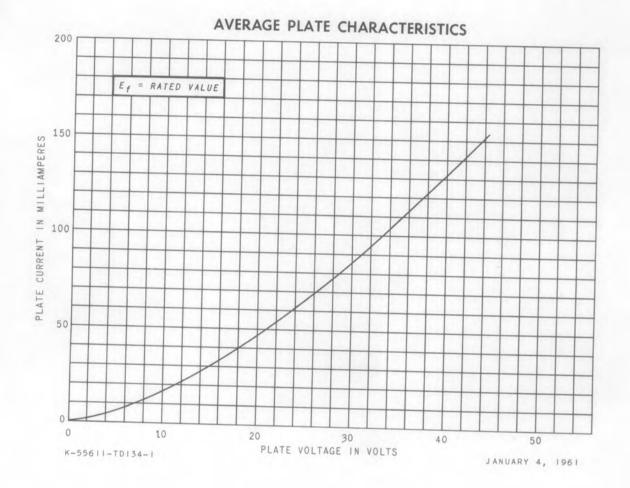
Design-Maximum Values

Peak Inverse Plate Voltage Steady-State Peak Plate Current DC Output Current	1000 150 25	Volts Milliamperes Milliamperes
Heater-Cathode Voltage Heater Positive with Respect to Cathode DC Component Total DC and Peak	175 225	Volts Volts
Heater Negative with Respect to Cathode DC Component Total DC and Peak Envelope Temperature at Hottest Point	175 225 300	Volts Volts C

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making allowance for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration. The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all other electron devices in the equipment.

AVERAGE CHARACTERISTICS


Tube Voltage Drop Ib = 40 Milliamperes DC

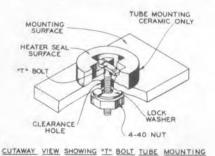
15 Volts

- * Publication of these data does not obligate the General Electric Company to manufacture a tube with these characteristics.
- + The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- # Heater current of a bogey tube at Ef = 6.3 volts.
- § Without external shield.

2/18/63 (B) Supersedes 11/29/62 (B)

Z-2689

GENERAL TECHNICAL INFORMATION


SOCKETLESS TUBE CIRCUIT TECHNIQUES

J. W. Rush, Jr. Receiving Tube Dept. GENERAL ELECTRIC COMPANY Owensboro, Kentucky

In most VHF, UHF, and microwave applications non-conventional vacuum tube structures are essential. Examples of such structures are the door knob tube, the acorn tube, the rocket tube, the pencil tube, the lighthouse tube, and the more recent metal-ceramic tube structures. Designing and manufacturing efficient and reliable sockets for these tubes has been a problem. To minimize this problem many circuit designers have used "semi-socket" designs combined with soldering directly to the tube elements. In most cases separate socket-like assemblies to which connections could be soldered, were built and attached to the tube. In addition to making connection to the tube elements some means of tube support was also necessary.

It has been the circuit designer's desire to solder directly to the tube. Until recently this has not been practical because the tube envelope or seals could not tolerate soldering temperatures or the tube element was not physically strong enough to be used for tube support. This latter socket requirement was a particular problem for circuitry to be subjected to high shock and vibration.

Recent tube manufacturing techniques have permitted the introduction of a line of planar ceramic vacuum tubes* that are both tolerant to soldering temperatures and can be physically mounted by the tube elements themselves. In addition to the several coaxial cavity designs for microwave service other types** were also introduced that were designed specifically for direct soldering. The tubes feature solder lugs and "T" bolt mounting of the tube envelope to a print-board or metal chassis. (See Fig. 1 and 2 illustrating the mechanical features of the "T" bolt.) Other lead attachment procedures such as wire wrap, spot welding, brazing and mechanical clips can also be used.

0

0

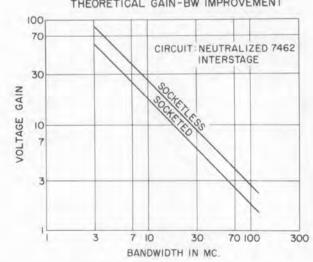
Fig. 1

* EIA type number 7077, 7266, 7486, 7481
 GE Development types Z-2823, Z-2835, Z-2869, Z-2866, Z-2897

** EIA numbers: 7462, 7720, 7625, 7588, 7296, 8081, 8082, 8083 GE Development types: Z-2868, Z-2354, Z-2870, Z-2731, Z-2692

For coaxial circuits it is feasible to solder cavity components directly to the tube elements (See Fig. 3). This procedure not only provides physical support in some cases but also reduces the problem of obtaining good RF contact between tube and cavity elements. With proper care the tube-circuit assembly can be replated after assembly.

The application of coaxial resonant circuits soldered directly to the tube elements is illustrated by an assembled, small tube-cavity combination, and an unassembled, larger tube-cavity, tubecircuit combination. This particular combination would be useful for a halfwave grid resonator cavity for a reentrance oscillator. The two tubes shown are designed for grounded cathode usage.


Fig. 3

THEORETICAL ADVANTAGES

By eliminating tube sockets in their usual form, several theoretical performance advantages are obtained. In most cases, for reasons of economy or moldability, the insulator portion of a tube socket is usually a higher loss factor material. With the elimination of the socket insulator losses, higher circuit "Q's" can be realized. Higher unloaded "Q's" lead to better circuit performance through higher circuit efficiency.

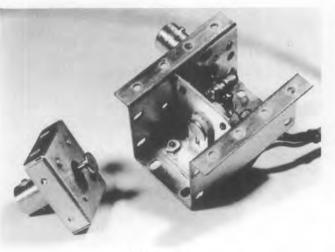
In many modern electronic circuits maximum gain-bandwidth must be obtained to process the high definition and complex signal pulse. The more general relation for broadband gain in a vacuum tube is:

 $G \cong g_m R_O$

THEORETICAL GAIN-BW IMPROVEMENT

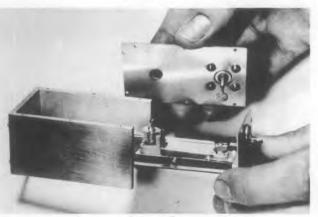
Fig. 4

The gain, G, depends most upon tube transconductance, gm, and the circuit load resistance, $R_{\rm O}$ (See Fig. 4). For a simple interstage circuit the bandwidth, BW, can be estimated to be:


 $BW = \frac{1}{2 \pi R_{o}C_{t}}$

Ct is the total shunt interstage capacitance. If we then construct the expression for gain-bandwidth product:

$$G-BW = \frac{gm}{2\pi C_t}$$

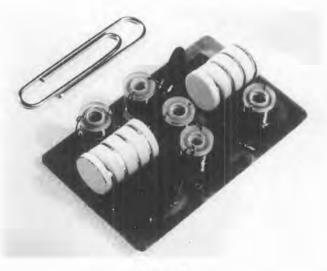

This relationship shows that for wide band amplification maximum available transconductance and minimum tube and circuit capacitances are essential. The available tube transconductances are high, up to 50,000 micromhos, and this is obtained with relatively small tube capacitances. To use the resulting high tube gain-bandwidth product the applied circuitry must have a low value of shunt capacitance. The use of direct soldering connections to the tube or soldering to clamps or clips supported by the tube assures maximum tube-circuit gain-bandwidth.

In addition to better gain-bandwidth products at any given center frequency, lower tube circuit capacitances permit operation at higher frequencies. By using resonant elements that clamp or solder to the tube itself, lumped constant circuitry may be used up to 1500 mc. Similar application of slab or flat parallel line elements provides efficient performance up to at least 3000 mc (See Fig. 5 and 6).

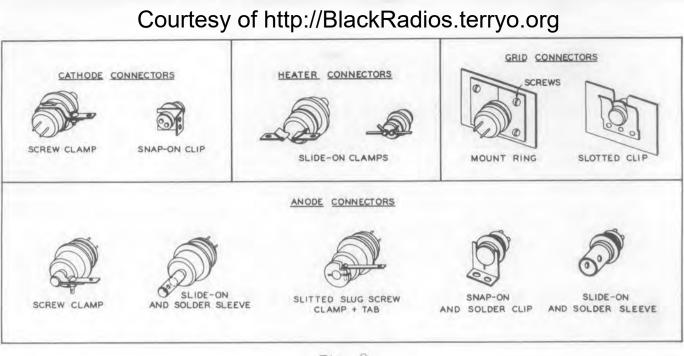
[

A 2700-mc grounded-grid amplifier featuring the socketless techniques to obtain good performance into the kilomegacycle region. The tube anode is resonated by a short section of strip line functioning as a parallel tuned plate circuit. The base of this plate line is by-passed for RF at the bottom of the amplifier chassis. Power is coupled out by means of an adjustable series output capacitor (shown removed from the amplifier). A clip-on connector (not visible) is used to connect an input coupling capacitor to the tube cathode. Heater chokes have been soldered directly to the tube heater buttons. The grid is grounded by a flat washer held down by four 4-40 screws.

A 1200 mc oscillator featuring snap-on slab-line resonators and screwed-down grid clamps. This circuit is a modified Colpitts configuration. The grid line is an un-etched portion of the print board base. The tube fore-shortens the half wave line on one end and the tuning capacitor fore-shortens the other. A grid leak resistor is soldered at a low impedance point.


Fig. 6

For many years the degenerative effect of cathode lead inductance has limited the high-frequency capabilities for conventional vacuum tubes as much as transit time effects. For this reason and others, the non-conventional structures of microwave tubes are used. The very low value of lead inductances in many cases was wasted by using high socket lead inductances. For the same reason tube instability was often due to poor grid grounding.


PRACTICAL ADVANTAGES

The use of socketless circuit techniques provides several practical advantages. Better system reliability is one of the more important. Since the socket can be eliminated, troubles due to contact wear, failure or corrosion are reduced. No socket insulators are present which may crack or deteriorate. Very low contact resistances can be obtained using direct soldering techniques. Better tube reliability can be obtained if known and consistent heat sinks are established for the tube. In some cases tubes have failed as a result of additional acceleration forces resulting from poor socket designs. Physical clamping of the tube directly to the chassis assures that the tube sees no more shock and vibration than the chassis itself. The increased performance gained by socketless circuitry means fewer stages for the same system gain. In some cases tubes in sockets being easy to remove, are selected to compensate for the loss of performance due to a faulty component. This repair procedure usually leads to a more catastrophic failure later on. Screwed-on or soldered connections to the tube are more easily inspected and do not depend upon assumed contact pressure.

Many of the microwave triodes are made very small to obtain low capacitance and transit time characteristics. Often the sockets for these tubes are much larger than the tubes themselves. This means that system size and weight can be lowered if alternate connection techniques are used (See Fig. 7). In some cases the tube itself also serves as a terminal strip for the connection and support of other circuit components such as resistors and capacitors. Socketless techniques also reduce the cost and design time associated with a socket design. Some of the ceramic triodes are fitted with mounting hardware requiring only a hole in a chassis or printboard. These tubes can be used with all connections being made on one side of the board or chassis. This leads to simplified circuitry or permits the use of dip-soldering techniques. (See Fig. 8 for suggested connectors for the coaxial types.)

A complete cascode circuit showing two soldered-in titanium metal ceramic triodes. This circuit features small size and weight through the elimination of sockets and the use of printed circuit techniques.

Fig. 8

SOLDERING TECHNIQUES

The use of socketless circuitry with good reliability usually requires soldering either to a tube clamp or tube element. When soldering to an auxiliary clamp or to the tube itself the usual care should be taken. If soldering directly to the tube is attempted on non-tolerant tube structures, failure can result from damaged seals. Although the use of high temperature seals and ceramic insulators greatly reduces the chance of this happening, the tubes are not indestructable. Ceramic tube structures are tolerant to soldering temperature as evidenced by tube life tests at temperatures up to 450°C. However, due to their small sizes, very large thermal gradients across the tube seals can and do cause tube failures and a resulting loss of reliability.

To reduce the possibility of tube damage a few precautions should be taken:

- 1. Use a solder with as low a melting point as possible for the intended tube circuit ambient operating temperature.
- 2. Use small wattage soldering irons to reduce the thermal inertia of the soldering heat.
- 3. Preheat the tube whenever possible to reduce further the thermal in-rush when heat is applied. Ovens, hot plates, I-R lamps, etc. can be used to preheat the tube prior to soldering. If these are not available, thermal shock can be reduced by operating the tube filaments for several minutes before soldering.

These precautions are most important on the smaller coaxial types since the thermal mass of these designs is small and very little thermal resistance is present between the solder surface and the tube seals. The use of solder-forms is highly recommended. The lug versions can be used with no more than the usual precaution and can be treated as any other solder-in circuit component. It should be noted that the suggested soldering procedures are conducive to cold soldering joints. This is true and care must be taken in this respect.

The basic tube structure used for these solderable tubes is made of titanium metal and ceramic. The titanium is essential for several reasons but its most important feature is the almost identical thermal coefficient of expansion when compared to good RF ceramic materials. Titanium on the other hand is very difficult to plate and no ordinary techniques have yet been devised to plate in the usual fashion. To provide solderable surfaces the titanium is first nickel plated and a thin gold layer is then applied. This gold layer is consumed by amalgamation into the solder. The nickel undercoat is the surface to which the solder connection is actually made. After many solderings, this nickel plating can be consumed. When this happens, the titanium base metal is exposed and one is confronted with the difficult task of soldering to titanium.

The thickness of the nickel plating must be carefully controlled between two limits. If the plating is too thin only a limited number of solderings can readily be made. If the plating is too thick peeling results. In development work where tubes are removed or resoldered many times increased difficulty may be expected in soldering operations.

TUBE REMOVAL

When it becomes necessary to remove the soldered-in tube the usual techniques apply. The tube can be treated as any other soldered-in component.

If the coaxial tube outline is used, it becomes expedient to use auxiliary clamps not only for soldering connections in some cases but also for the mechanical support of the tube. At microwave frequencies most circuits use the tube in a grounded grid configuration and the tube is mounted by clamping the grid element to a chassis shield or wall. In most cases DC "floating" of the grid is not essential and by-passing is not necessary. Where by-passing is required, mica or suitable spacers can be used without loss of mechanical support. Due to the physical location of the cathode of the coaxial designs, cathode clamps are usually used to provide connections and soldering surfaces at more convenient distances from the tube. Such clamps also greatly improve the ease of tube removal. Soldering or clamping is usually optional on the heater and anode terminals. Soldering is desirable for the heater connections since contact resistance at these points may seriously lower the tube heater voltage.

EXAMPLE EQUIPMENT

Figure 9 shows a 10-frequency crystal controlled "STALO" developed by the Light Military Electronics Department of General Electric Co. Socketless circuit techniques are used to reduce size and weight, to obtain mechanical and electrical stability, and to fulfill the need for maximum gain-bandwidths for the broadbanded multipliers and amplifiers. Small "T" bolt ceramic triodes are used in each of the 10 crystal channels and frequency selection is made by applying B+ to the desired channel. At the center of the 10 oscillators a "clamp-on" cathode connector is used as a common input to a grounded grid stage and connections are made around the

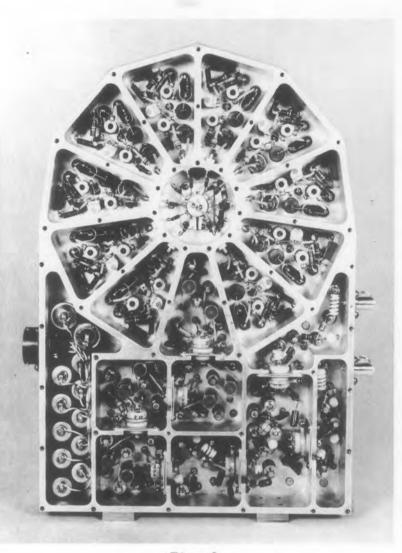


Fig. 9

circumference of the cathode clamp. The grid of this tube and the remaining larger coaxial triodes, eight in all, use flat sandwich or surface clamps. The same cathode clamp is used for all the coaxial outline tubes. The wide bandwidths were essential to provide multiplying and amplification over about a 10% bandwidth at near 500mc center frequency. The maximum gain per stage was essential to keep the total number of stages to a minimum for maximum reliability. Multiplying at wide band-widths is traditionally difficult and high transconductance triodes as well as socketless circuitry were required for acceptable performance.

CONCLUSION

0

0

With the advent of new vacuum tube manufacturing techniques it has become practical to use new socketless circuit techniques. Where sockets are not specified, circuit performance and reliability are improved. Such techniques permit the use of vacuum tubes at higher frequencies as well as providing a companion component to improve the state-of-the art for lumped constant and slab line circuitry.

NOISE FIGURE AND THE GRIDDED VACUUM TUBE

1

0

0

1

The three most important types of noise in the gridded triode vacuum tube are shot noise, flicker noise, and induced grid noise.

Shot noise is characterized by its independence from frequency effects and its dependence upon tube currents and transconductance.

Flicker noise or one-over-frequency-noise usually follows the simple rule of varying inversely with frequency at the rate of three decibels per octave. Flicker noise usually limits the sensitivity of very low frequency amplifiers and produces instability in DC amplifiers. The exact cause of flicker noise is not well defined but reduction of this effect can be best obtained by using triodes with high transconductance at low plate currents. To reduce both shot and flicker noise effects, triodes with maximum transconductance to plate current ratios should be used. The planar ceramic triode is outstanding in this respect.

Induced grid noise is caused by transit-time effects which induce shot noise into the signal grid. This source of noise is characterized by its six decibels per octave increase with frequency. Figure 1 is an approximate representation of these three noise sources as a function of frequency.

Johnson or thermal noise can also be generated by tube and circuit losses or if any unbypassed resistances are used. This noise source is usually not a serious problem if proper components and circuitry are used.

When a tube is subjected to shock or vibration, another source of noise called microphonics can occur. The frequency profile of this noise varies greatly with tube structure. Although microphonics usually produce AM signals in audio amplifiers, some AM and FM effects can occur in RF amplifiers. The planar ceramic tubes are usually less microphonic than other competing tube structures and the use of bonded-heater techniques has practically eliminated this source of noise.

Equivalent Noise Circuits

Figure 2 shows two simplified forms of a commonly used noise figure equation^{\perp}. An equivalent noise circuit is also shown. The noise figure equation can be solved for minimum noise figure with respect to R_s or G_s. This relationship is:

$$NF_{min} = 1 + 2\sqrt{5G_t}$$
 Req

The resulting optimum source resistance equation is:

 R_s opt. = $\sqrt{\text{Req.} \div 5 G_t}$

- 2 -

To calculate the minimum available noise figure and the source resistance required to obtain this, the absolute values of Req and G_t must be known. The above equations assume G_c to be insignificant and in most cases this condition exists. Req can be estimated by the equation:

Req = 2.5 + triode transconductance

Gt results from transit time effects which produce out-of-phase grid currents and voltages and has a noise output five times thermal.

A second equivalent noise circuit² has been developed using Req and a new term G_n . See Figure 3. Req is identical to the Req used in Figure 2 and G_n is equal to 5 Gt. The equations for minimum noise figure and optimum source resistance are then simplified as shown in Figure 3. This simplified equivalent circuit technique leads directly to the measurement of Req and G_n . If an input conductance tuning curve is obtained as described, the equation of this curve is:

$$G_{tot} - G_n = W^2 \Delta C^2 \operatorname{Reg}$$

 G_n is obtained immediately as shown and the above equation can then be solved for Req. G_{tot} and ΔC are obtained for two points A and B on the curve. The curve shown in Figure 3 can be generated from tests conducted on a circuit similar to the one shown in Figure 7. Iq can be calibrated for an equivalent capacitance change or a tuning capacitor can be added in shunt with the input inductor. R_s is omitted.

The measured values of Req can be checked against the previous approximate equation. The factor of 2.5 appears to vary from about 2 to 3.5 depending on the tube size and geometric configuration. The approximate value of G_t can be obtained by dividing G_n by five. This value of G_t can then be used to determine input circuit bandwidths if all loading is due to transit-time effects.

Measured Results

The procedure outlined in Figure 3 was used to determine the equivalent noise parameters for several low noise planar ceramic triodes:

Type Req (ohms) G_n at 90 MG	(monms)	
6299 170 160		
	100	
	100	
7588 45 500		
7644 170 160	160	
7768 40 500	500	
7784 170 160		
8083 300 100		

- 3 -

It should be noted that minimum noise figure is a function of the product of Req and G_n . For similar cathode current densities, grid wire sizes, grid wire spacing, and grid to cathode spacing, this ratio appears to be relatively constant. These geometric and electrical conditions exist on the low noise planar triodes and similar noise figures are quoted for all types. See the "Optimum Noise Condition vs Frequency" curves shown at the front of the ceramic tube reference manual. The value of optimum source resistance varies directly with the ratio of Req and G_n . The larger triodes provide more transconductance and lower values of Req. The larger tubes also have higher values of transit-time conductance for the larger tubes, 7588 and 7768, at any given frequency.

Noise Parameters vs Frequency

The table shown above records measured values of G_n at 90 megacycles. The value of Req has been described to be independent of frequency and G_n to be a function of frequency squared. Using the values of Req and Gn measured at f_o equal to 90 mcs, minimum noise figures and optimum source resistance at any other frequency, f, can be calculated. See Figure 4. Reasonably good correlation between measured and calculated performance has been obtained between frequencies from 30 to 3000 megacycles.³

Tube Selction

One might ask, why use the larger tubes if similar noise figures can be obtained with the smaller tubes? For minimum over-all noise figures, the gain of the first stage and noise figure of the second stage are important. The noise figures previously discussed apply only to the first stage of an amplifier chain. The relationships are equated as follows:

$$NF_{1,2} = NF_1 + \frac{NF_2 - 1}{GL}$$

11

The noise figure subscripts apply to the first and second stages and G_1 is the available gain of the first stage. Wide bandwidths are usually required in most modern low noise amplifiers. For wideband circuits, the larger tubes are desirable to obtain both maximum gain and lower values of optimum source resistance. The smaller tubes can be used most effectively for narrow-band low noise circuits where their size, weight, low-input powers, and economy are more important. In both cases, the second stage should also be a low noise tube if lowest noise figures are desired.

Noise Performance vs Operating Conditions

The low noise triode must be properly applied if optimum noise performance is desired. Tests have shown that variations in heater voltage within rated values produce little effect on noise figure. The voltage changes normally associated with plate voltage supplies are also unimportant if the initial

- 4 -

value is properly chosen. Generally speaking, the triode should be operated under those conditions which provide a maximum transconductance to plate current ratio, produce no grid currents, and provide suitable gain to reduce second stage noise effects. In most cases, the tube is operated with about .5 volt bias, rated heater voltage, and maximum rated plate dissipation if maximum noise performance is required.

There are three acceptable methods of biasing the triode and these are shown in Figure 5. Condition "a" is the simplest and uses a low value of cathode resistor and a fixed plate voltage. This method produces the widest variation in operating conditions from tube to tube. The type shown in Figure 5 is the 7462 and each small square represents one tube. Condition "b" uses the same value of cathode resistor but more constant plate currents are obtained through the use of a large plate dropping resistor. Higher plate voltages must be used and the power loss in RB must be tolerated. Referring to Figure 6, it can be seen that minimum noise figures are obtained along a bias line slightly less than .5 volts. These curves were taken on the type 7588. In Figure 5, condition "b" gives the smallest variation in bias and the level is maintained near the desired value of about .5 volts. For this reason, condition "b" is the best bias method for obtaining good initial noise performance from tube to tube and maintenance of low noise with life. Condition "c" uses a fixed value of plate voltage and a large cathode resistor to maintain constant plate currents. A negative voltage at the cathode or a positive voltage at the grid is necessary to provide the proper bias between the grid and cathode. This bias method results in wide variations in bias from tube to tube with a large percentage of the tubes operating at very low bias. Three reject 7462's were purposely included in Figure 5. These three tubes required zero bias to maintain the recorded plate currents near 6.5 ma. for condition "c". These same three tubes were the three highest noise figure tubes shown for condition "c" but gave lower noise figures using condition "b" bias.

High Current Density Effects

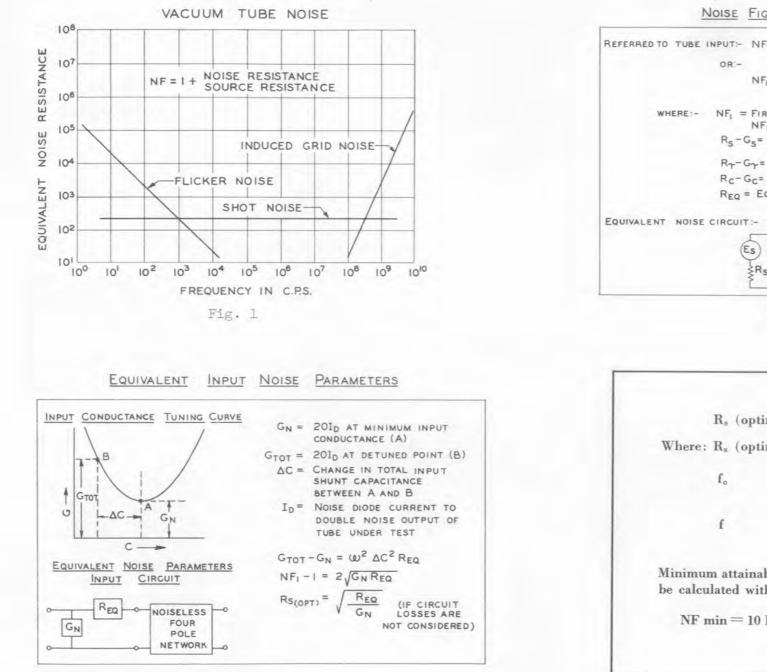
To improve the noise performance of the triode at RF frequencies the effect of transit-time must be reduced. This can be done with closer grid to cathode spacing or by increasing the accelerating forces on the electron. In some cases closer grid to cathode spacings are practical but noise figure tests show no significant improvements. Most types are designed to make maximum use of cathode space-charge smoothing and this is not always the closest grid to cathode spacing. The second method, using greater accelerating potentials, is present when the tube is operated at higher current densities. In addition to reducing the transit times, much higher transconductance result and lower values of Req are present. The type 7077 triode is normally tested at about .15 amperes per sq cm and noise figures around 8 db are measured at 1200 mcs. Noise tests were made at .6 a/cm² and an over-all noise figure of 4.8 db was measured. Some of the ceramic tubes listed in the reference manual have good life at .6 a/cm² and lower than published noise figures can be obtained.

- 5 -

Circuit Considerations

The neutralized grounded cathode and grounded grid stage are most used for low noise amplifiers. The input impedances for these two circuits are radically different and require different noise considerations. In theory, both circuits have similar minimum noise figure, and optimum source resistance. The theory also predicts that power match and minimum noise figure conditions cannot exist at the same time. Therefore, the effect of mismatch between the source and tube input becomes important. The grounded cathode circuit is most useful at lower frequencies because less mismatch exists. For wide band circuits the lower optimum source resitance types should be used as previously discussed. Figure 8 shows the measured input bandwidth, measured over-all noise figures, and calculated first stage noise figure for a cascoded pair of 7462 triods at 30 mcs. The results on this grounded cathode input circuit also shows that relatively large changes in source resistance result in small changes in noise figure if values near the optimum value are initially chosen.

At higher frequencies much lower source resistances are required and the grounded grid stage provides less mismatch under optimum noise conditions. In most cases above about 800 mcs, for all practical purposes, minimum noise is obtained under minimum VSWR adjustments. It is very difficult to determine the frequency at which similar noise results are obtained for both circuit arrangements. Calculations are complicated and various assumptions are necessary. The best method of obtaining minimum noise figures uses commercially available automatic noise figure test equipment. This equipment continuously reads noise figure as a circuit is adjusted and both circuits can be easily compared. The curves shown in Figure 6 were obtained using an automatic noise figure test set. Although under power match conditions the theoretical noise figure is over 5 db, a measured figure of slightly over 3 db was obtained. The tube input was about 25 ohms and the optimum source resistance is over 200 ohms. The automatic test set permitted an optimum low noise adjustment between conjugate and optimum source resistance conditions.


Conclusions

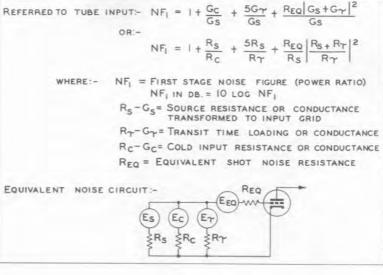
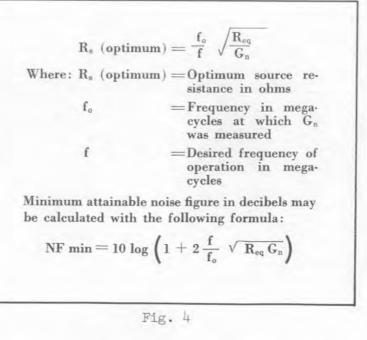
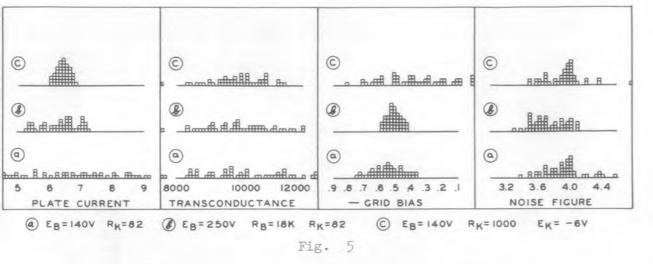
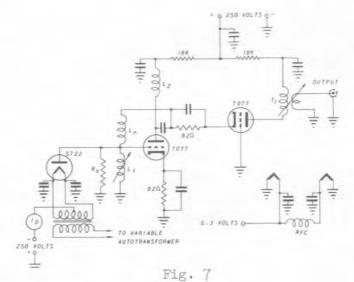
To assist the designer of low noise circuits simplified techniques have been developed for triodes. Both theoretical and measured results confirm that lowest noise figures require the best tube choice for a given frequency and bandwidth, proper DC operation, and proper circuit arrangements and adjustments. State-of-the-art results are very seldom if ever obtained without careful and laborious procedure.

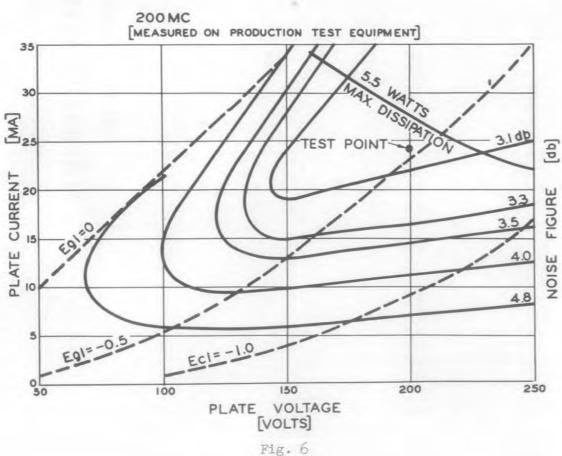
References:

1

- 1. Vacuum Tube Amplifiers Valley and Wallman, pp 634
- 2. "Theory of Noisy Four Poles" Rothe and Dalke Proc. of IRE, June 1956
- 3. "A Comparison of Domestic and Foreign RF Amplifier Tubes for UHF-TV"
 - C. Metelman Die Telefunken Rohre, 1959.

NOISE FIGURE EQUATIONS


Fig. 2

Courtesy of http://BlackRadios.terryo.org

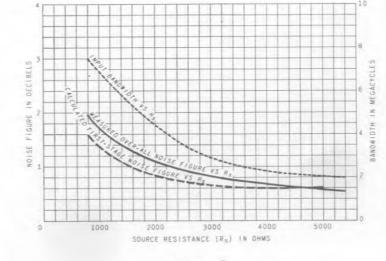


Fig. 8

THE USE OF GRIDDED CERAMIC VACUUM TUBES

IN PHASED-ARRAY LONG-PULSE UHF RADARS

J. W. Rush Application Engineering General Electric Company Owensboro, Kentucky

Introduction

Until recently, existing radars have been able to handle the traffic of satellites, space probes, and missiles. To handle the expected traffic resulting from the stepped-up space efforts, new radars are being conceived and designed.

Many of these recent radar designs feature electronically steerable, phased arrays to obtain the high pulse powers, beam definition, and efficient low noise reception necessary for long range, three dimensional, multitarget tracking.

System studies have been made, ¹ and operating frequencies in the low UHF and/or high VHF spectrum appear to be attractive. Part of this conclusion was based on the simplicyty, ease of application, cost per kilowatt of power, stability, and the wide type and size selection associated with the gridded vacuum tube. It is the purpose of this paper to display the approximate performance capabilities of the gridded tube, and only limited comparison with competing devices is attempted. This is necessary because of the lack of available data, either known or unknown.

This paper is principally concerned with the radar functions of pulsed power generation and low noise reception. The requirements of extreme phase fidelity and the desire for rapid frequency shift dictate the use of broadband amplifiers in both the transmitting and receiving functions. Broadband performance from 425 mc. to 1400 mc. is presented and amplifier bandwidths up to 15% are discussed. Power levels from thermal to kilowatts are assumed.

Transmitter

The vacuum tube appears to be one of the most useful and economical sources² of RF power for the frequencies being considered. Since both high

- ¹ "Phased Arrays selected for New Generation Radars" Manfred Meisels July 1962 Microwaves
- ² See article "Array Radars A Survey of their Potential and their Limitations" J. L. Allen (Note excellent bibliography) May 1962, Microwave Journal

-2-

power and long pulses are desired, the radar performance depends primarily upon the long life and performance capabilities of the vacuum tube chosen.

The most important requirements for the transmitter are:

- 1. High pulse power outputs.
- 2. Long duration pulsing.
- 3. Broadband amplification for phase fidelity.
- 4. Long life,

Long Pulse Derating:

Tube manufacturers have been reluctant to provide tube performance data and ratings for long pulses, greater than about 10 microseconds, without specific life testing. To provide a preliminary design derating curve, all available long pulse data was collected and the curves shown in Figure 1 were plotted.

Due to the lack of actual life test data over the wide range of pulse widths shown, the data plotted was taken from several sources. The data plotted up to about 6 µsec has been published by several tube companies and represents earlier and presently used pulse widths for UHF gridded tubes. In the 10 to 1000 µsec region only limited data was available. Video pulse life tests, at about 20 µsec have been made by one company active in the phased array field. One tube company³ has been running some life tests at 100 µsecs and most of the 1000 µsec data was taken on pulse life tests run on computer tubes.

1

The data shown in Figure 1 was purposely plotted in terms of unit cathode area and unit grid-to-plate spacing to make the curves applicable to all tubes. It is impractical to present this data on one tube or even on a family of tubes. Using the chart all tube sizes and spacings can be "tested" for their intended application. The transmitter designer must obtain the required dimensions from the tube manufacturer.

These ratings have not been proven with exhaustive life tests and should be used only as a guide in the early choice of tube sizes and configurations. The curves apply only for plate pulsing and additional derating is necessary for grid and/or cathode pulsing. This derating will apply both for input video and RF pulsing. A rule-of-thumb for plate voltage derating might be one-half to three-fifths of the permissible peak plate-pulsed value. This rule generally

³ Private communication from D. W. Hawkins, GE Company, Bldg. 269, Schenectady, N.Y.

⁴ <u>Subminiature Electron Tube Life Factors</u>: Edwards, Lammers & Zoellner Reinhold Pub. Corp.

-3-

applies to oxide coated cathodes. Current deratings are unknown factors and usually do not require the degree of derating necessary for plate voltages. This is generally true because excessive and damaging arcing occurs at the steady state high stress conditions common for input pulsing. In both input and plate pulsing applications the current derating is more dependent upon the long life capabilities of the cathode. Cathode life also depends on other factors in addition to current loading and voltage stresses.

Tube Choice:

Using the design curves shown in Figure 1 the circuit designer can work backwards to obtain the appropriate tube area and spacings for a given desired power output. For maximum efficiency the tube should be used near these rated conditions. However, when this is done, power gain usually suffers and the final operating point must be selected with both efficiency and desired power gain in mind. In practice, an optimum approach to the proper tube complement would use the tube at least in one stage at its maximum rating for maximum efficiency and the same tube in previous stages for increased stage gain. This philosophy can be applied until the efficiency becomes so low that a smaller tube would be more practical from the standpoint of size, cost, and/or power consumption.

Tube Characteristics:

It is interesting to note the effect of normal tube characteristics upon power outputs and power gains for a given input power. To determine this, special engineering tubes were built with a wide variety of both mu and transconductance values. Test results on these tubes, given on Figure 2, show that although mu and transconductance are not important considerations where power output and efficiency are concerned, they are important with respect to power gain. The curve clearly shows the desirability of both high mu and high transconductance.

The curves shown on Figure 2 were developed from performance measured on about forty tubes. The various mu's and transconductances were obtained by varying such things as grid wires per inch, plate to grid spacing, grid wire sizes and grid configurations. There would be other variables such as tube capacitances but at 425 mc the different values obtained on the relatively small tubes evaluated were not important. On larger tubes the capacitances would be more important. Actually the higher mu tubes, which were also the higher transconductance tubes, had the lowest plate to grid capacitance.

Gain vs Power Output:

It is difficult to determine the theoretical gain as a function of drive level and one must usually resort to actual measurements. Figure 3 shows the test results obtained on two different ceramic triodes, Z-2869 and 7768, when driven at various levels. These data were taken using the triodes as class C amplifiers and gating the tube "on" with an RF pulse of 500 microseconds duration. The measured values of power output, efficiency, and power gain

-4-

were recorded as a function of cathode loading in ma. per square centimeter of active cathode surface. The mu's are different with similar transconductances. The Z-2869 has a mu of about 100 and the 7768 has a mu of about 225. Although these results would not apply to all triodes, they would be useful in predicting at least qualitative results. The tests were made at 425 mc using single-tuned plate circuits and narrow bandwidths.

Wide Band Performance:

As stated previously, it is important that the tube performance be determined at the desired bandwidths. To do this, a lumped-constant, double-tuned plate circuit, grounded-grid amplifier was constructed and the test results are shown in Figure 4. It is difficult to accurately establish the broadband high level pulsed characteristics due to the lack of suitable sweep generators. The results shown here represent bandwidths obtained by point to point measurements and for a double tuned circuit optimized near the anticipated required bandwidths. The cathode loading was approximately 1.2 amperes per square centimeter. At lower drive levels one would expect higher gains and lower power outputs. The available power gains would increase to the values obtainable for class A conditions. The performance of the 7768 under these conditions will be discussed later.

Grid and/or Cathode Plate Pulsing:

For simplicity, the performance data shown in Figures 2, 3, and 4 were taken on RF cathode pulsed class C stages. However, as previously discussed, the tube must be operated at plate voltages lower than permissible using pulsed plate voltages. Where maximum power output is most important more pulsed power can be obtained from the plate pulsed stage. This latter method, however, requires higher voltages and more elaborate modulating equipment. Another factor in favor of plate pulsing would be the reduction in transit-time effects with the higher voltages. This may be important for the larger tubes which have wider element to element spacings. These various factors, plus others which may not be so obvious, suggest that the individual designer must make his own decision as to the type of amplifier gating he should use.

Triodes vs Multi-Grid Structures:

Available test results do not clearly define the comparative UHF performance between the tetrode (or pentode) and an equivalent triode. The performance advantages of the multigrid tube, where they exist, must be weighed against the extra cost and circuit complexity.

Using the design curves shown in Figure 1 and substituting the plate-toscreen-grid spacing for plate-to-control-grid values, the resultant ratings were spot checked on a power tetrode, the 7399, and the measured power outputs agree basically with predicted values using plate efficiencies common for this tube size and at the test frequency. The spacing between the screen and control grids must also be considered to prevent arcing between these two grids. Although this spacing is usually much less than the spacing from

-5-

screen grid to anode, the voltages are also much lower. Data on the 7399 has been taken at about 400 mc using plate pulses of 100 microseconds and operating at a duty factor of .005. Good life test results have been obtained out to at least 5000 hours. Life also depends upon other factors such as cathode and envelope temperatures. This sort of information must be obtained from the individual tube manufacturer.

If the broadbanded triode and multigrid structures are compared in a simplified theoretical fashion, the advantages of the multigrid tube may be questionable. For example, the voltage gain for the tetrode or pentode can be estimated by:

|A| = gmRo where Ro is the load resistance and gm is the tube transconductance. The gain-bandwidth product is:

$$|A| \Delta f = gm where \Delta f is the 2 \pi Ct$$

half-power bandwidth and Ct is the total interstage shunt capacitance. When the grounded grid triode stage is considered, the broad-band gain is approximately the same as the multigrid tube when Ro is much less than the tube's plate resistance. For the equivalent interstage circuitry, the grounded grid triode gain-bandwidth product is theoretically approximately equal to the multigrid tube. At narrow band the very high plate resistance values of the multigrid tube make this tube parameter relatively unimportant. This is not true for triodes.⁵

Available Cathode Sizes:

The curves shown in Figure 1 suggest that available power outputs are limited only by cathode areas and tube spacings. This is true except for the usual limitations applied to vacuum tubes used at low UHF. Large areas and wide spacings cannot be used and only the well-designed high-frequency structures are applicable. Cathode areas up to about 10 square centimeters have been designed into efficient ceramic tube structures and useful peak powers up to 100 kilowatts are obtainable at pulse widths of around 100 microseconds.

Life vs Performance:

Tube manufacturers have known for years that efficiency can be improved by running the tube's cathode at high current densities. The resultant high performance is short lived, and for long life applications the tube must be used more conservatively. In an effort to determine the performance versus life capabilities, life tests have and are being conducted and in some cases by the systems design people themselves. Significant life tests have been conducted

⁵ Chap. 7 <u>Electronic Designers Handbook</u> Landee, Davis, and Albrecht McGraw Hill

-6-

at about two to three amperes per square centimeters loading at pulse lengths of useful value. The results obtained on the 7399 have been mentioned. Figure 5 shows the early results obtained on the Z-2869 and 7768 previously mentioned. These life tests are being run at about 1.5 amps peak video per square centimeter with a duty factor of .005 and for a pulse duration of 500 microseconds. For simplicity, the tubes are being life tested as grid-pulsed oscillators.

Receiver

The most desirable performance features for the receiver are:

- 1. Low noise.
- 2. High broadband gain.
- 3. Long life.
- 4. Wide dynamic range.
- 5. Tolerance to overloads.

The metal ceramic planar triode can best provide all of these features. In view of the low noise figures obtainable from competing devices it is important that the best available tube be used that can operate efficiently at UHF.

Preamplifier Design and Performance:

From a theoretical standpoint, since maximum gain-bandwidth is desirable, multituned interstages should be used. For example, if equal "Q" double-tuned interstage circuits are assumed and the primary and secondary capacitances are equal, a double-tuned circuit will give $\sqrt{2}$ more gainbandwidth than a single tuned interstage. Triple tuning and so on will give additional performance. For multistage amplifiers, alignment becomes very difficult and practical designs might limit themselves to double and triple tuned interstages. It should be noted from a theoretical standpoint that the maximum available gain-bandwidth product in multituned circuits can be obtained only if the required conditions of circuit "Q", coefficient of coupling, primary and secondary capacitances, and so on, are used.

Using two 7768's as cascaded grounded grid amplifiers, a 425 mc. amplifier has been constructed using lumped constant circuitry and double tuned interstages between the two tubes and at the amplifier output plate circuit. A typical performance of 35 db gain and a 4.0 to 4.5 db noise figure was obtained with a 3 db bandwidth of about 7.5%. This measured gain-bandwidth product of about 1600 mc. per stage agrees with the theoretical value. Similar products have been measured at 1000 and 1350 mc.

-7-

Dynamic Signal Range:

8

To permit simultaneous tracking of close-in targets as well as threshold return signals, it is important that the receiver have a wide dynamic signal range. Figure 6 shows the power gain of the 7768 measured for input signals from noise level to distortion due to overdrive. A useful dynamic range of about 100 db is evident.

Tolerance to Over-signals:

Two types of signal overload can be present in any radar. One of these is the ever-present transmitter power leakage due to poor or inadequate TR techniques. This leakage tends to reduce receiver life and represents a problem of operating cost. Another type of signal overload is a transitory one and results from either TR failures or intentional power jamming. In both cases the most logical solution is the use of tolerant receiver components. This results in less stringent TR requirements and better protection against unpredictable signal levels.

The exact signal overload tolerances of the various receiver components are difficult to find and in most cases to measure. To illustrate the relative tolerances of the various receiver techniques, best available results are shown in Figure 7.

If gating voltages are available, additional protection can be obtained by turning the receivers off during the transmitted pulse period. This resulting mismatch reflects energy normally received. This type of extra protection is usually more effective using vacuum tubes because of the larger obtainable mismatches without such problems as reverse bias breakdown and burnout.

Some degree of mismatch and resulting reflection of unwanted signals exists when the receiver is overdriven due to changes in device input impedances. This would only be permissible if the overdrive does not shorten the receiver life.

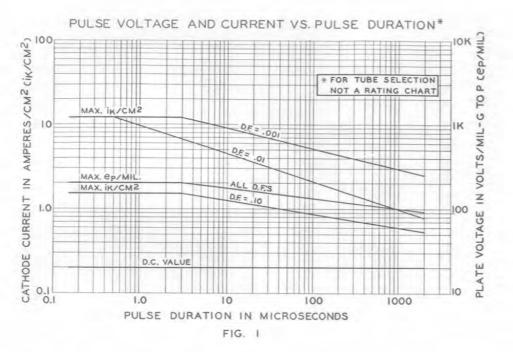
Long Life and Reliability:

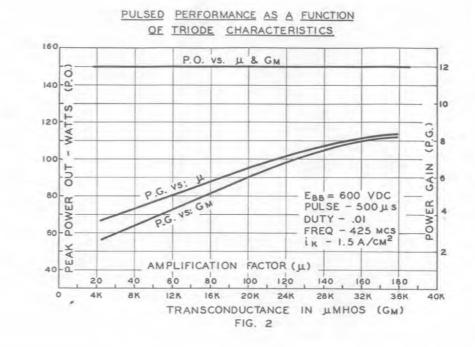
Previously mentioned transmitting tube life test results and the results shown in Figure 8 demonstrate the high performance obtainable from the vacuum tube. If similar tube structures with proven pulse capabilities are used in the receiver the survival under high pulsed conditions due to signal overload is assured.

Conclusion

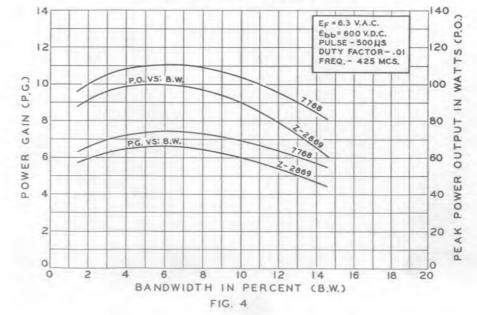
Preliminary evaluation of the usefulness of the vacuum tube in the phasedarray long-pulse radar concept has been made. Test results show power outputs sufficient to provide very large radiated pulsed powers. With the simplicity and low cost of the vacuum tube approach these powers can be obtained economically. Life test results both in the transmitting and receiving

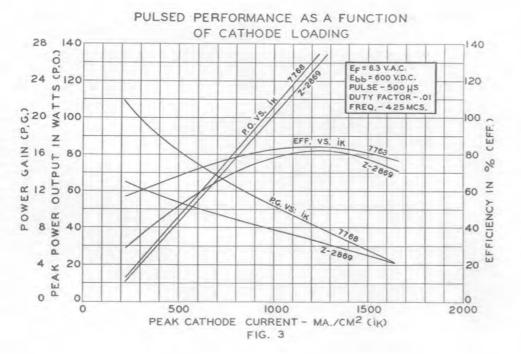
-8-

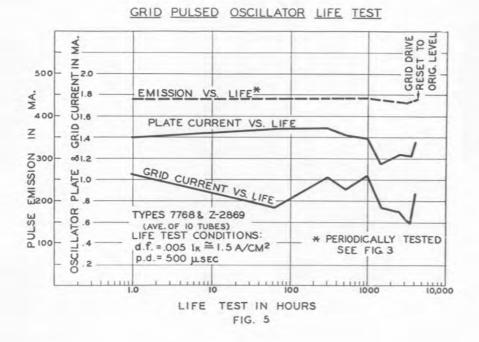

function have demonstrated tube life sufficiently long to minimize the maintenance problems present in such a large and complicated radar concept.

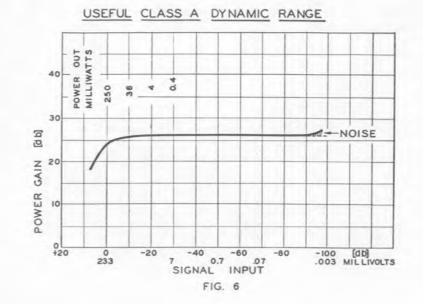

Gridded vacuum tubes are easier to apply in the receiver function than other devices and are much more tolerant to over-signals both anticipated and unanticipated. Broadband gains of sufficient value have been demonstrated to reduce the problem of second stage noise contribution. The measured overall low UHF noise figures are sufficiently close to values obtained from competing solid-state devices to warrant the serious consideration of vacuum tubes. With the extra protection necessary for the solid-state receiver and the insertion losses and costs of the required additional circuitry, the performance differentials most often quoted between the solid state and vacuum tube approaches should be carefully evaluated.

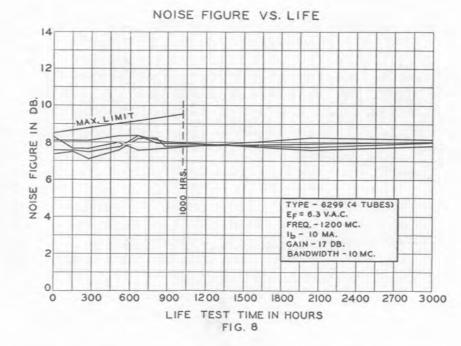
The writer wishes to thank W. P. Kimker and C. E. Finley of the Receiving Tube Department and R. P. Watson of the Power Tube Department of the General Electric Company for their assistance in the preparation of this paper and in obtaining the test results shown therein.


NOTE: The disclosure of any information or arrangement herein conveys no license under any patents of General Electric Company or others. In the absence of an express written agreement to the contrary, the General Electric Company assumes no liability for patent infringement (or any other liability) arising from the use of such information by others.


JW Rush/ka







21

TOLERANCES TO SIGN	AL OVERLOADS
(ESTIMATED BUR	N-OUT)
CRYSTAL MIXERS	
AND DETECTORS	- IO ERGS
TUNNEL DIODE	- 100 ERGS
LOW NOISE PARAMETRIC DIODES	- 1000 ERGS
EPITAXIAL PARAMETRIC DIODES	- 10 ⁴⁴ ERGS
CERAMIC VACUUM	- 10 ⁺⁸ ERGS

EI-43A

LIFE TEST SUMMARY OF CERAMIC TYPES UNDER HIGH TEMPERATURE AND HIGH HUMIDITY CONDITIONS

High Temperature Life Tests

There has been a continuous interest in the high temperature capabilities of ceramic tubes at temperatures above those permitted by the published ratings. Through our regular lot acceptance life testing, considerable data have been accumulated which substantiate the published temperature ratings. However, other special life tests have been conducted to evaluate the tubes at higher-thanrated temperatures and a summary of some of these tests is presented in this report. Attached are life test data consisting of Plate Current and Transconductance medians versus time for the following tests:

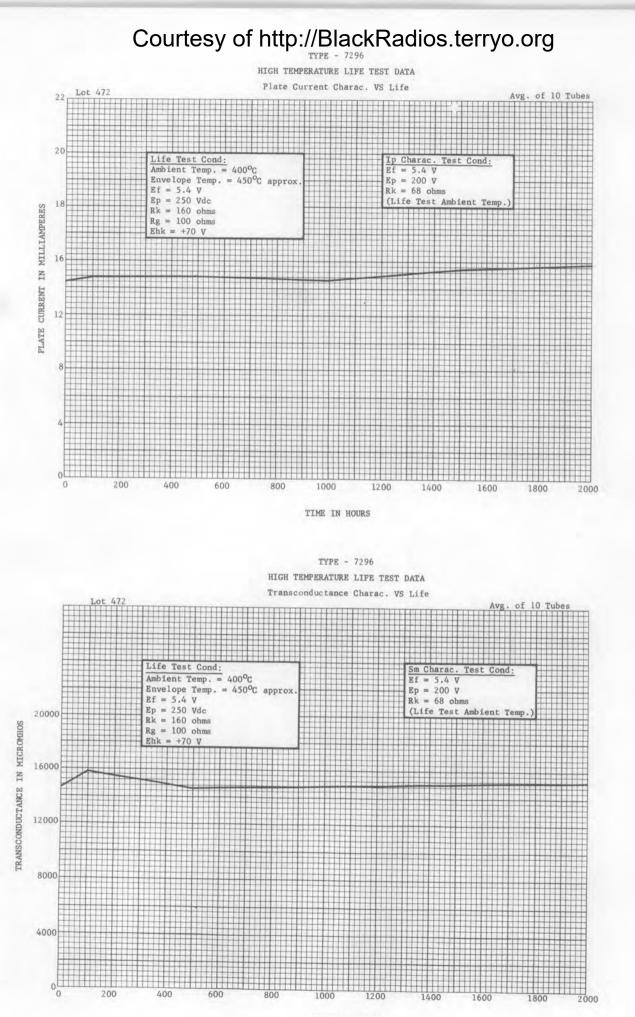
Type	Lot	Amb. Temp.	Env. Temp.	Ef*	L.T. Duration	n
7296	472	400°C	450°C	5.4 V	2000 Hrs.	10
7296	305	500°C	550°C	4.3 V	4000 Hrs.	10
7296	45	240°C	300°C	6.3 V	15000 Hrs.	10
7296	46	240°C	300°C	6.3 V	15000 Hrs.	10
Z-2354	253	400°C	450°C	5.0 V	17000 Hrs.	10

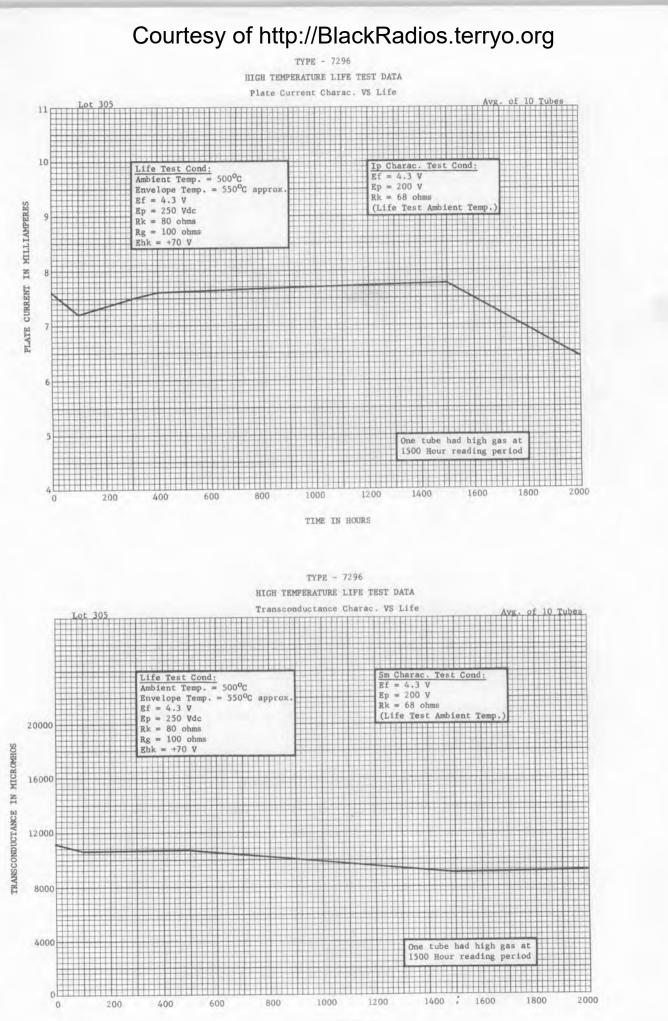
* Note that lots 472 and 305 of the 7296, and lot 253 of the Z-2354, were life-tested at reduced heater voltage. This was done to obtain longer tube life by keeping the cathode temperature within bounds. However, the particular value of heater voltages used in these tests are not necessarily the optimum values. The lower plate current and transconductance values of lot 305, as compared with lot 472, are caused, at least in part, by the higher envelope temperature of lot 305. Higher envelope temperature increases the spacings between the tube elements, thus reducing the transconductance and plate current. It may be that with the particular heater voltage used, the cathode temperature was lower for lot 305, causing part of the difference in characteristics. However, this was not verified by measuring cathode temperatures.

Humidity Test

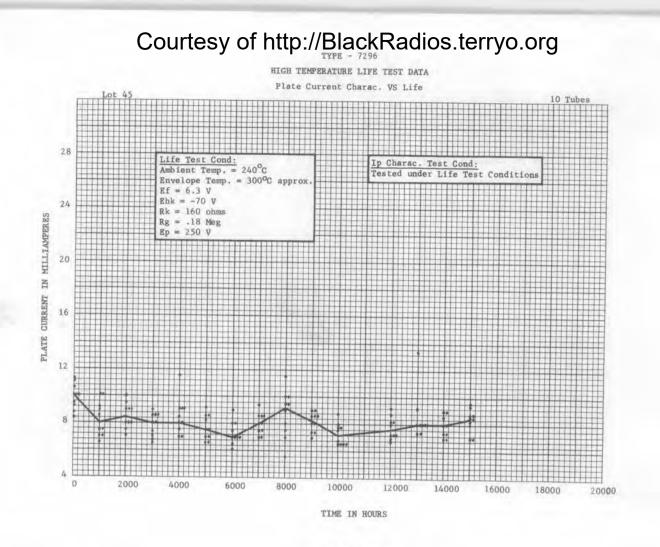
1

In addition to the high ambient life test operation summary, test data of a special humidity test are included. This test was performed to investigate the effect on tube properties due to absorption of moisture into the ceramic and seal areas. The test consisted of type 7768 tubes placed in a chamber and subjected to a

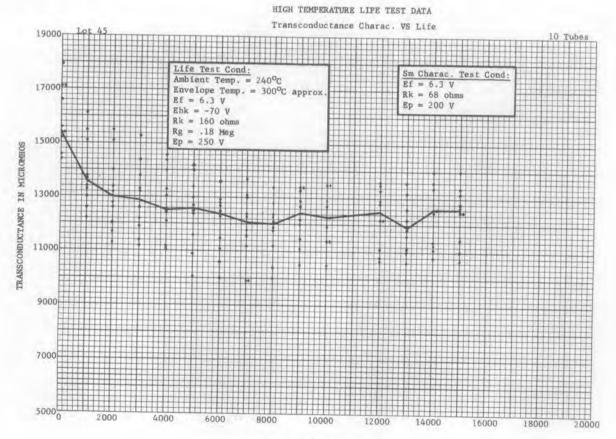

steam vapor of approximately 100°C and 95-100 percent relative humidity for an extended period. These test conditions are in accordance with MIL-E-1, Par. 4.9.9, with the exception of a longer duration. The tubes were taken out of the chamber at various intervals, conditioned at room ambient for several hours, and read for heater current and plate current characteristics to detect any air leaks or other degradation in electrical characteristics. Of the two lots being tested, one has completed 1030 hours and the other has completed 466 hours. The results indicate no significant change in plate current or heater current throughout the test. These readings are good indicators of tube condition and it is evident that the tubes have withstood the humidity environment without deleterious effects.

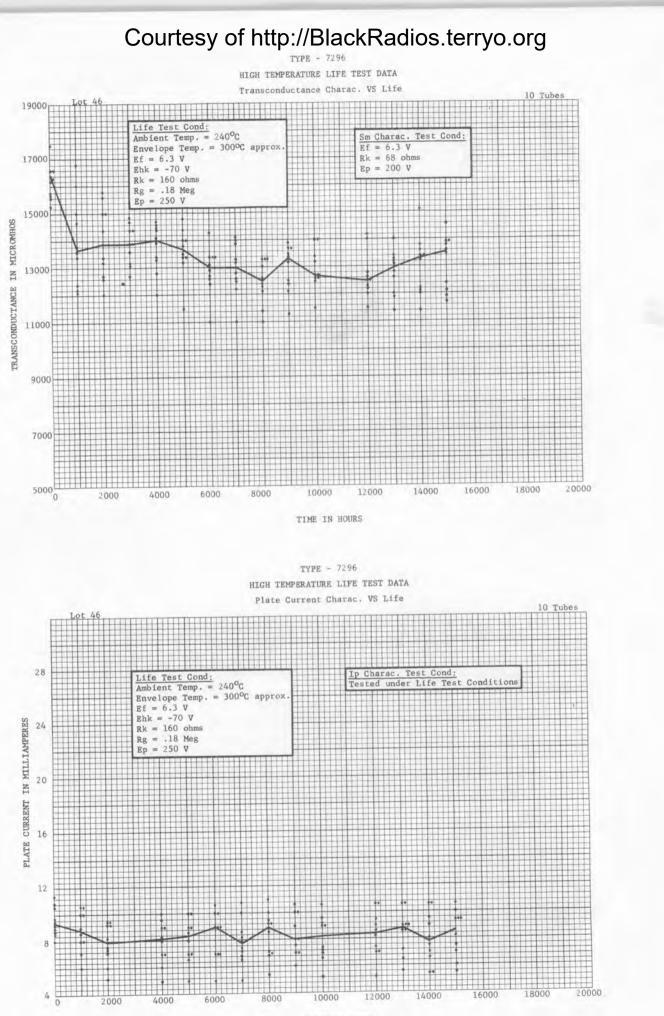

These data, of course, are insufficient to provide a great deal of statistical proof, but the long-duration life performance data do present an encouraging indication of reliable operation under high ambient and high humidity conditions.

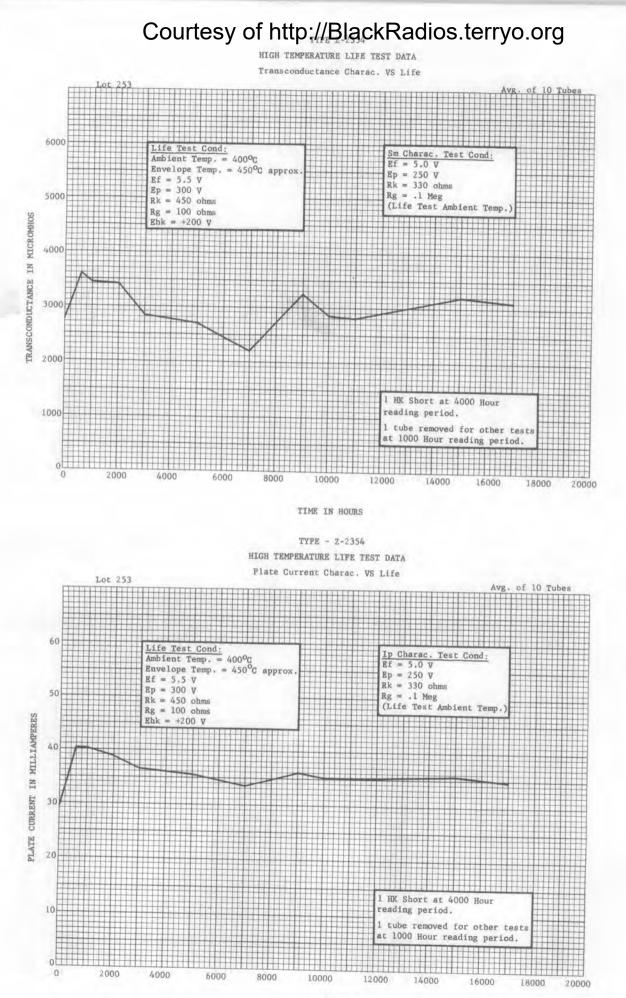
> This material was prepared by W. H. Lemaster, Specification Development, General and I&M Tubes, Receiving Tube Engineering, and distributed by Technical Data Unit, Receiving Tube Department.


The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

- 2 -




-


TYPE - 7296

TIME IN HOURS

1

Humidity Test Results of Ceramic Type 7768

Test Conditions Per MIL-E-1 4.9.9

Group #1

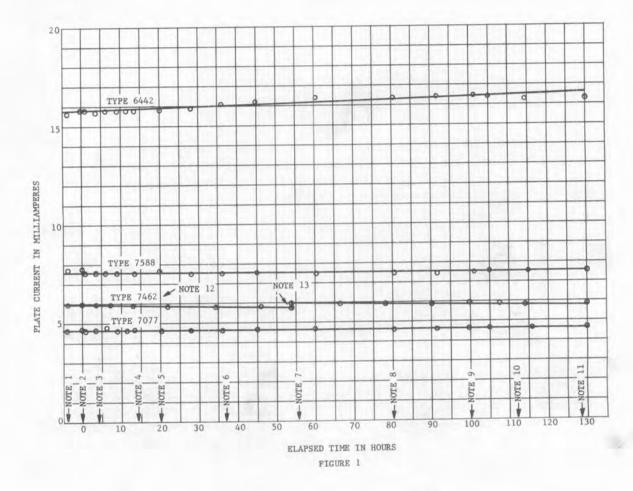
Tube #	0 Hr.	92 Hr.	261 Hr.	404 Hr.	568 Hr.	706 1/2 Hr.	845 Hr.	<u>1031 Hr</u>
In of If(mA)		400	399	400	400	400	400	400
1P-26 IP(mA)	32.0	31.5	31.0	32.8	31.8	34.0	32.2	34.9
Th(max)		400	400	400	400	400	400	390
1 P- 28	24.0	27.0	27.0	28.0	27.0	38.0	27.5	26.0
		400	402	401	401	402	402	402
1P-41	24.5	26.5	27.0	27.0	26.9	27.8	26.9	26.5
		419	420	419	420	420	420	415
LP-43	25.0	25.0	25.0	26.0	28.0	29.0	29.0	28.8
	23.0	399	400	395	400	400	400	398
1P-49	21.0	23.5	23.5	24.5	24.5	25.0	24.0	25.0
	21.0	402	400	400	405	400	402	400
1P-68		22.5	21.0	22.0	23.0	21.0	20.8	21.5
	18.0	398	399	395	399	399	398	398
1P-72			30.0	30.0	30.9	30.0	27.2	30.2
	24.0	30.0		399	399	399	399	395
1P-77		399	399	27.5	26.9	27.0	27.5	28.9
11-11	26.0	28.0	27.0		408	405	405	405
15-10		405	405	405 29.0	30.0	30.0	29.9	29.0
	25.0	29.0	28.0	29.0	50.0		0.015	
Group #2							166 11-	
Tube #	0 Hr.		138 1/2 Hi	<u></u>	280 Hr.		466 Hr.	
III I II (mA)	400		400		400		395	
1L-1 IP(mA)	21.0		21.0		21.0		21.0	
	392		395		398		395	
1L-13	28.0		29.0		28.0		29.0	
	409		410		410		405	
1L2-13	26.0		26.5		25.9		25.8	
	400		402		405		400	
1K4-23	19.5		20.0		19.5		19.5	
	410		410		400		398	
1K6-3	21.5		20.9		20.0		19.0	
	395		405		400		400	
1K6-7	26.8		27.0		26.0		26.0	
			402		405		400	
1P-59	402		25.0		24.0		24.0	
	24.1		405		405		405	
1P-65	405		25.0		25.0		26.0	
	25.5				400		399	
1P-75	398		400		26.0		26.2	
11-75	26.0		26.8		400		400	
1P-78	400		400				24.5	
11-10	24.0		24.5		23.0		-4.3	

EI-48

RESULTS OF RECENT TESTS OF CERAMIC TUBES DURING EXPOSURE TO NUCLEAR RADIATION

A number of General Electric ceramic tubes were recently operated in the field of a nuclear reactor with provisions made for periodic monitoring of the tube and circuit performance before, during, and after exposure to nuclear radiation.

Five type 6442's, 5 type 7588's, and 5 type 7077's were operated with the tubes, sockets, and connecting wires only adjacent to the reactor and all other circuitry removed from the vicinity of the reactor, while 18 type 7462's were operated in three 60-megacycle intermediate-frequency amplifiers, adjacent to the reactor. In addition, one tube of each type and one 60-megacycle amplifier were operated simultaneously away from the reactor to provide readings for comparison.


The reactor was operated for 128 hours, achieving a 3-megawatt level at 20 hours, and maintaining it to the end of the test. At intervals, measurements were made of plate current, plate current versus grid voltages, and plate current at reduced heater voltage for all tubes not in the 60-megacycle amplifiers; and plate current of each tube, gain, bandwidth, and tangential noise for the four 60-megacycle amplifiers.

During the test, there was very little change in average plate current of any of the tubes. However, two of the 60-megacycle amplifiers failed at approximately 57 hours, without plate current changes. Within two hours after shutdown of the reactor, both of the amplifiers that failed had recovered and would perform approximately as well as they did initially.

It is believed that coaxial cables carrying r-f signals to and from the amplifiers were severly affected by the heat from a hot-air line, and that this accounts for the amplifier failures, since there was no significant difference between the plate current readings for the tubes in the non-operative amplifiers and those in the amplifier that continued to function.

- 2 -

Detailed results of the tests are presented below in graphical form with explanatory notes.

Notes:

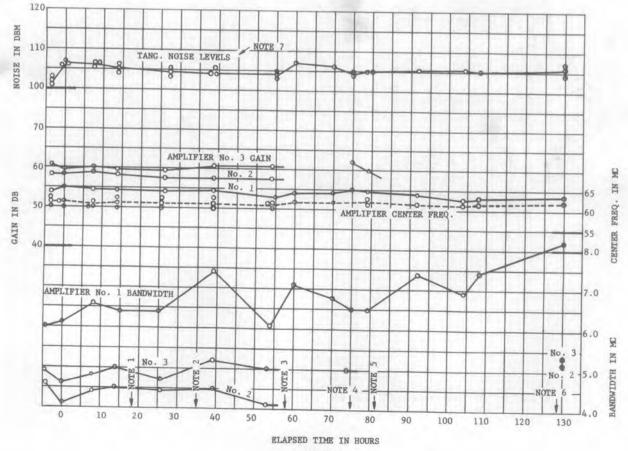
- 1. Reactor output level = 0 Kilowatts
- 2. Reactor output level = 50 Kilowatts
- 3. Reactor output level = 150 Kilowatts
- 4. Reactor output level = 1 Megawatt
- Reactor output level = 3 Megawatts 5.
- Estimated dosage = 1.5×10^{-16} NVT (E>0.3 Mev) and 6. 1.8x10¹⁰ Ergs/GM(c) All dosages are estimated on the basis of previous dosimetry of the source.

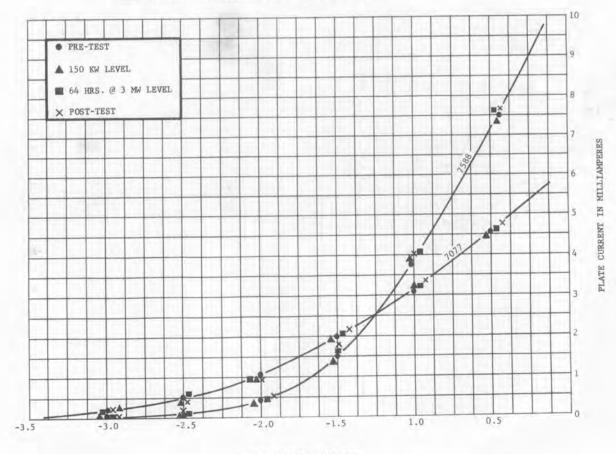
- 3 -

- 7. Estimated dosage = 3×10^{16} NVT (E>0.3 Mev) and 3×10^{10} Ergs/GM(c)
- 8. Estimated dosage = 5.5×10^{16} NVT (E>0.3 MeV) and 5×10^{10} Ergs/GM(c)
- 9. Estimated dosage = 7.5×10^{16} NVT (E>0.3 Mev) and 7×10^{10} Ergs/GM(c)
- 10. Final estimated dosage = 1×10^{17} NVT (E > 0.3 Mev) and 9×10^{10} Ergs/GM(c)
- 11. Reactor shut down at 128 hours.
- 12. The 7462's were approximately 10 inches further away from the reactor than the other tubes. Therefore, for these tubes divide both neutron dose and gamma dose by 2.
- The bias battery for the amplifiers was changed at this point.

Test Circuit	No. of Tubes	Type	Test Conditions	
$\frac{9}{5}$ Ebb = 200V DC			Ec	RL
₹ RL	5	6442	-1.0V	3.3K
ے ۔	5	7588	-0.5V	10K
Ec	5	7077	-0.5V	20K

Plate current of the 18 type 7462's in the 60 MC amplifiers was obtained by measuring voltage drop across each cathode-bias resistor.




FIGURE 2

Notes:

- 1. Design and test gamma dosage goal 3×10^9 Ergs/GM(c)
- 2. Design and test gamma dosage goal 1x10¹⁶ NVT (E>0.3 Mev)
- 3. Amplifiers #2 and #3 failed. Estimated dosage 2.5x10¹⁶ NVT (E>0.3 Mev) and 3X10¹⁰ Ergs/GM(c)
- 4. Amplifier #3 operating again and stable
- 5. Amplifier #3 intermittent from here to shutdown
- Reactor shut down at 128 hours. All three amplifiers operating within two hours after shutdown.
- 7. Noise levels not best obtainable. Amplifier inputs were loaded with 2.2K grid resistors and matched to a 50-ohm input cable for desired bandwidth and minimum VSWR.

Gain - Insertion gain was measured using a small-signal r-f pulse.

- Noise Tangential noise is the DBM level of small-signal r-f pulse equal in amplitude to the noise. This does not show the low noise capabilities of the 7462, because the shunt resistor used in the input of the 60-MC amplifier was chosen to obtain the desired bandwidth and low VSWR rather than minimum noise.
- Center Frequency and Bandwidth These were both measured by observing, with an oscilloscope, the swept response of the 60-megacycle amplifiers. The length of coaxial cable required (200 feet) between the amplifiers and the measuring equipment, and its exposure to the reactor environment, are believed responsible for most of the variations in bandwidth recorded.

GRID VOLTAGE IN VOLTS FIGURE 3

- 5 -

Figure 3 shows the average variation in plate current with bias for 5-tube samples of the 7077 and 7588. These measurements were made four times during the tests. Where the four readings are shown in line with the curve, they were so close together that they could not be distinguished when the curve was plotted.

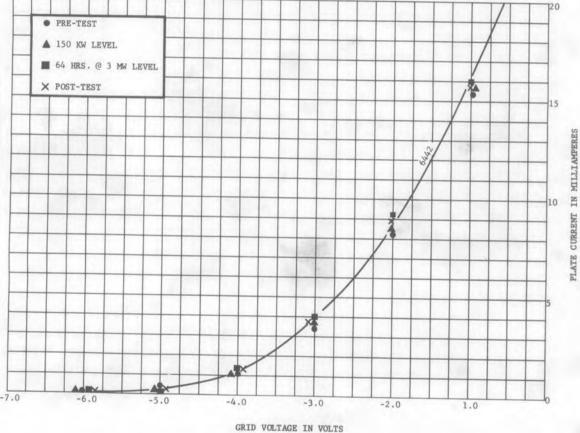


FIGURE 4

Figure 4 presents data for the 6442, similar to that presented in Figure 3 for the 7077 and 7588.

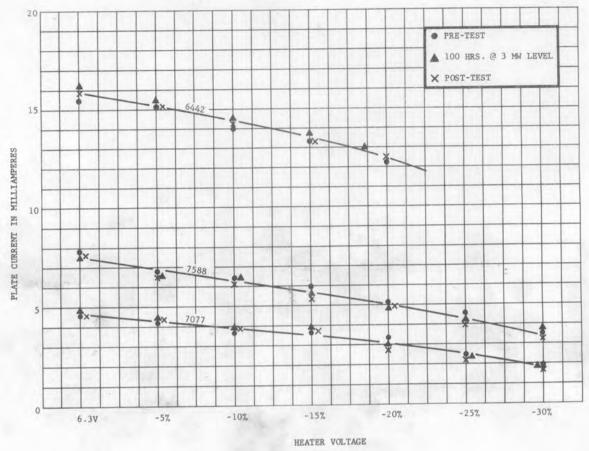


FIGURE 5

Figure 5 shows changes in plate current resulting from variation in heater voltage for the 6442, 7077, and 7588. A ten-minute period was allowed between each heater voltage change in order to stabilize the readings.

> Prepared and distributed by Technical Data Unit, Receiving Tube Engineering, Owensboro, Kentucky on the basis of information obtained in tests that were made under Air Force Contract AF33(657) 8686 for which a manufacturer other than General Electric was the prime contractor.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or

elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.