Instruction Booklet

-

MODEL 10-1100 SERIES
PREDETECTION RECORD CONVERTERS

September 1969

TRADE SECRETS

The information contained in/on this document constitutes trade secrets of Microdyne Corporation and, therefore, the user of this information covenants and agrees that he/it will not, nor will he/it cause others to copy or reproduce said information, either in whole or in part, or manufacture, produce, sell or lease any product copied from or essentially based upon the information contained herein without prior written approval of Microdyne Corporation.

GENERAL

The Model 10-1100 Series Predetection Record Converters are designed primarily for use in the Microdyne Model $1100-\mathrm{R} / 1100-\mathrm{AR}$ Telemetry Receivers. The series comprises six individual modules each of which accepts the 10 MHz second IF signal and provides a specific video carrier output suitable for recording. Data bandwidths normally associated with the video carrier signals are also provided. The model numbers and associated output frequencies of the six modules are given below.

Converter	Output
$10-1100(112.5)$	112.4 kHz
$10-1100(225)$	225 kHz
$10-1100(450)$	450 kHz
$10-1100(600)$	600 kHz
$10-1100(800)$	800 kHz
$10-1100(900)$	900 kHz

The electrical specifications for the converter series are listed in table 1.

Table 1. Specifications

```
Input Center Frequency . . . . . . . . . 10 MHz.
Output Center Frequency . . . . . . . . dependent on module.
Output Level . . . . . . . . . . . . . 2V p-p with }50\textrm{mV}\mathrm{ input.
Local Oscillator Stability . . . . . . . . }\pm0.005%
Data Bandwidth:
    10-1100 (112.5) . . . . . . . . . . 150 kHz.
    10-1100 (225) . . . . . . . . . . . }300\textrm{kHz
    10-1100 (450) . . . . . . . . . . . }600\textrm{kHz
    10-1100 (600) . . . . . . . . . . . }800\textrm{kHz
    10-1100 (800) . . . . . . . . . . . 1400 kHz.
    10-1100 (900). . . . . . . . . . . 1200 kHz.
```


installation

Only one predetection record module can be installed in a receiver at any one time. The module plugs into a receptacle which has been prewired for it. For example, when used with the $1100-\mathrm{R}$ receiver, the module plugs into XA19. The input to the converter is supplied by either the receiver 10 MHz limited or linear outputs on the receiver rear apron. The selected IF signal is then patched to the receiver record converter input using $50-\mathrm{ohm}$ cable. The video carrier output is taken from the receiver rear apron and connected to the recording device using 75 -ohm cable.

OPERATION

No operating procedures are applicable to the $10-1100$ series converters.
THEORY OF OPERATION
The circuitry of the six converter modules is identical except for the crystal frequency and certain component values. Each module consists of oscillator circuit A2, oscillator driver Q1, input amplifier A1, mixer A3, and video output amplifier A4-Q2. The schematic diagram of the $10-1100(900)$ converter is shown in figure 2 and is typical of the series.

The 10 MHz IF signal from the receiver is applied to P1-A1 and coupled to input amplifier A1. A1 is configured as a cascode amplifier with the output tuned to 10 MHz by L7. From A1, the signal is coupled to mixer A3 where it is heterodyned with the local oscillator input from Q1. The output of the mixer is the difference between the two inputs and is dependent upon the frequency of the LO signal. This output is coupled through low-pass filter C30-C32-L9-R28 to the input of video amplifier A4. A4 is configured as a video amplifier and drives the high level output at P1-A3. The output level is set to 2 volts peak-to-peak by gain adjustment R2. Normally, R2 is set to provide a 2 volt p-p output with a 50 mV input. Should the input level be other than 50 mV or if a higher output level ($3 \mathrm{~V} \max$) is required, R 2 must be adjusted as necessary.

The local oscillator circuit consists of integrated circuit A2 and driver Q1. The output frequency of the oscillator is determined by crystal Y1 and varies between modules. Output is taken from pin 5 and is coupled to driver Q1. From Q1, the LO signal is applied to the mixer for heterodyning with the 10 MHz IF input.

MAINTENANCE

No preventive or periodic maintenance procedures are applicable to the 10-1100 series of converters. Should the unit fail to operate properly, the defective stage or stages can most easily be located by employing normal signal tracing procedures. Voltage levels for the active elements are given below to aid in fault isolation. Once the defective component is located, it should be replaced with a component of the identical value and tolerance.

$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$	$\underline{6}$	$\underline{7}$	$\underline{8}$	$\underline{9}$	$\underline{10}$	$\underline{11}$	$\underline{12}$	
A 1	+20 mV	-3 V	-6 V	-3.7 V	0 V	+6 V	+3 mV	+6 V				
A 2	+5.4 V	+6.1 V	0 V	-0.65 V	+9.7 V	+7.3 V	+6.6 V	+10 V	+6.5 V	0	+15 V	+15 V
A 3	+0.25 V	+0.8 V	-0.2 V	-0.9 V	+4.4 V	0 V	-0.7 V	+5 V	+1.5 V	-6 V	+6 V	+6 V

$$
\underline{E} \quad \underline{B} \quad \underline{C}
$$

Q1 $\quad-9.8 \mathrm{~V} \quad-9.2 \mathrm{~V} \quad-0.5 \mathrm{~V}$

Q2 $\quad-0.32 \mathrm{~V}+1 \mathrm{~V} \quad-6 \mathrm{~V}$

ALIGNMENT

The following procedure is recommended for realigning the $10-1100$ series predetection record converters. The equipment listed below should be employed to obtain satisfactory results.

Extender Module	Microdyne 300-355
Signal Generator	HP606A
Distortion Analyzer	HP334A
Oscilloscope	HP180A
Voltmeter	HP412A

Procedure:
a. Remove the module cover and install the module in the receiving using the extender module.
b. Connect the HP606A generator to the receiver rear apron record input. Set the generator for a 9.4 MHz output at 50 mV RMS.
c. Connect the receiver record output to the oscilloscope "B" vertical input. Note the presence of a sine wave.
d. Connect the oscilloscope $\mathrm{X} 10,75$-ohm terminated probe to channel A vertical input. Set the oscilloscope for "A" operation.
e. Connect the X10 probe to the junction of C26 and C28.
f. Adjust L7 for maximum amplitude of the display.
g. Reset the vertical input to B .
h. Set the HP606A for a 10.000 MHz output at 50 mV RMS.
i. Terminate E vertical input in 75 ohms and adjust R 2 on the module for 2 V p-p display.
j. Disconnect the cable and load connected to the oscilloscope B vertical input and connect it to the input of the HP334A distortion analyzer.
k. Set the analyzer for voltmeter operation and a 1 volt range.
l. The meter should indicate 0.7 V RMS.
m. Note the level in dB and rotate the HP606A frequency control over the data bandwidth and note less than a 1 dB variation in the meter level.
n. Set the analyzer for distortion measurement. Set the HP606A to 10.300 MHz .
o. Measure the distortion; it should be less than 0.75%.
p. Disconnect all test equipment.

REPLACEMENT PARTS LIST

Reference
 Designation
 Description

A1 Integrated Circuit, RCA CA3028A
A2 Integrated Circuit, RCA CA3018A
A3 Mixer, Lorch FC200R
A4
Integrated Circuit, RCA CA3018A
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie $8131-\mathrm{B} 106-\mathrm{X} 5 \mathrm{~V} 0-103 \mathrm{M}$ Capacitor, tantalum, $100 \mu \mathrm{~F} \pm 20 \%, 20 \mathrm{~V}$, Kemet T362D107M020AS
Capacitor, ceramic, $5.1 \mathrm{pF} \pm 0.25 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-519C
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8131-B106-X5V0-103M
Capacitor, tantalum, $100 \mu \mathrm{~F} \pm 20 \%, 10 \mathrm{~V}$, Kemet T362C107M010AS
Capacitor, tantalum, $100 \mu \mathrm{~F} \pm 20 \%$, 10V, Kemet T362C107M010AS
Capacitor, ceramic, $0.001 \mu \mathrm{~F} \pm 20 \%$, 100 V , Erie 8111-100-X5R-102M
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8131-B106-X5V0-103M
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8131-B106-X5V0-103M
Capacitor, ceramic, $10 \mathrm{pF} \pm 5 \%$, 100 V , Erie $8101-100-\mathrm{COG}-100 \mathrm{~J}$
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8131-B106-X5V0-103M
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8131-B106-X5V0-103M
Capacitor, ceramic, $0.001 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8111-100-X5R-102M
Capacitor, ceramic, $10 \mu \mathrm{~F} \pm 20 \%$, 20V, Kemet T362B106M020AS

C15
thru
C18
C19
C20
C21
C22
thru
C24
C25
C26
C27
C28
C29
C30
C31
C32
C33
thru
C37
C38
C39

Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie $8131-\mathrm{B} 106-\mathrm{X} 5 \mathrm{~V} 0-103 \mathrm{M}$
Capacitor, ceramic, $24 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie 8111-100-COG-240J
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8131-B106-X5V0-103M
Capacitor, ceramic, $110 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie $8121-100$-COG-111J
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8131-B106-X5V0-103M
Capacitor, ceramic, $100 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie $8131-100$-COG-101J
Capacitor, ceramic, $36 \mathrm{pF} \pm 5 \%$, 100 V , Erie 8121-100-COG-360J
Capacitor, ceramic, $200 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie $8121-100$-COG-201J
Capacitor, ceramic, $150 \mathrm{pF} \pm 5 \%$, 100V, Erie 8121-100-COG-151J
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie $8131-\mathrm{B} 106-\mathrm{X} 5 \mathrm{~V} 0-103 \mathrm{M}$
Capacitor, ceramic, $0.001 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8111-100-X5R-102M
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100 V , Erie $8131-\mathrm{B} 106-\mathrm{X} 5 \mathrm{~V} 0-103 \mathrm{M}$
Capacitor, ceramic, $0.001 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8111-100-X5R-102M
Capacitor, tantalum, $10 \mu \mathrm{~F} \pm 20 \%, 20 \mathrm{~V}$, Kemet T362B106M020AS
Capacitor, ceramic, $33 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie $8121-100-\mathrm{COG}-330 \mathrm{~J}$ Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8131-B106-X5V0-103M

Replacement Parts List, continued
Reference
$\underline{\text { Description }}$

CR1
thru Diode, Sylvania 1N914
CR3
L1 Inductor, $220 \mu \mathrm{H}$, Jeffers 1315-20J
L2
L3
L4
thru Inductor, $120 \mu \mathrm{H}$, Jeffers 1315-14J
L6
L7
L8
L9
Inductor, $220 \mu \mathrm{H}$, Jeffers 1315-20J
inductor, $5.6 \mu \mathrm{H}$, Jeffers 4435-1K

L10
P1 Connector, Cannon DEM13W3P
Q1 Transistor, npn, RCA 2N5180
Q2
R1 Resistor, fixed composition, $51 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley Cb5105
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
Resistor, variable, $10 \mathrm{~K} \Omega$, Spectrol 53-2-1-103
Resistor, fixed composition, $1 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1025
Resistor, fixed composition, $51 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB5105
Resistor, fixed composition, $51 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB5105
Resistor, fixed composition, $1.5 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1525
Resistor, fixed composition, $5.1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5125
Resistor, fixed composition, $20 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB2035
Resistor, fixed composition, $20 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Eradley CB2035
Resistor, fixed composition, $22 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB2205
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $51 \Omega \pm 5 \%$, $\frac{1}{4} w$, Allen Bradley CB5105
Resistor, fixed composition, $1.5 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1525
Resistor, fixed composition, $2 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB2025
Resistor, fixed composition, $22 \Omega \pm 5 \%$, $\frac{1}{4} w$, Allen Bradley CB2205
Resistor, fixed composition, $39 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB3935
Resistor, fixed composition, $1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Eradley CB1025
Resistor, fixed composition, $620 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB6215
Resistor, fixed composition, $22 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB2205
Resistor, fixed composition, $2.7 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB2725
Resistor, fixed composition, $820 \Omega \pm 5 \%, \frac{1}{4} w$, Allen Eradley CB8215
R23
Resistor, fixed composition, $3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB3025
Resistor, fixed composition, $51 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5105

Replacement Parts List, continued

Reference
Designation

R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39
R40
R41
R42
R43
R44

Y1

Resistor, fixed composition, $2 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB2025
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CE1005
Resistor, fixed composition, $510 \Omega \pm 5 \%, \frac{1}{4} w$, Allen Bradley CB5115
Resistor, fixed composition, $51 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5105
Resistor, fixed composition, $51 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5105
Resistor, fixed composition, $10 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Eradley CB1 035
Resistor, fixed composition, $510 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Eradley CE5115
Resistor, fixed composition, $16 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1605
Resistor, fixed composition, $51 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5105
Resistor, fixed composition, $2 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB2025
Resistor, fixed composition, $2 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Pradley CB2025
Resistor, fixed composition, $75 \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB7505
Resistor, fixed composition, $10 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 035
Resistor, fixed composition, $22 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB2235
Resistor, fixed composition, $820 \Omega \pm 5 \%, \frac{1}{4} w$, Allen Bradley CB8215
Resistor, fixed composition, $10 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1 035
Not Assigned
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
Resistor, fixed composition, $110 \Omega \pm 5 \%$, $\frac{1}{4} w$, Allen Bradley CB1115
Resistor, fixed composition, $30 \Omega \pm 5 \%, \frac{1}{4} w$, Allen Eradley CE 3005 Resistor, fixed composition, $30 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Eradley CB3005

Crystal, CR-64/U (frequency dependent on module)

Figure 1. Record Converter, Component Location

