Instruction Manual

MODEL 1112-VT(SYN)
SYNTHESIZED RF TUNER

February 1977

TRADE SECRETS

The information contained in/on this document constitutes trade secrets of Microdyne Corporation and, therefore, the user of this information covenants and agrees that he/it will not, nor will he/it cause others to copy or reproduce said information, either in whole or in part, or manufacture, produce, sell or lease any product copied from or essentially based upon the information contained herein without prior written approval of Microdyne Corporation.

TABLE OF CONTENTS

SectionTitlePage
I GENERAL DESCRIPTION
1-1 Scope 1-1
1-2 Purpose and Capabilities 1-1
II INSTALLATION
2-1 General 2-1
2-2 Unpacking and Handling 2-1
2-3 Storage 2-1
2-4 Installation 2-1
2-5 Removal 2-1
2-6 Packaging for Reshipment 2-1
III OPERATION
3-1 Introduction 3-1
3-2 Operating Instructions 3-1
3-2. 1 Local Mode 3-1
3-2.2 Remote Mode 3-1
IV THEORY OF OPERATION
4-1 General4-1
4-2 Circuit Description 4-1
4-2.1 RF Circuitry (Figure 7-4) 4-1
4-2.2 First Mixer and IF Amplifier (Figure 7-4) 4-2
4-2.3 Local Oscillator 4-2
4-2.3.1 A4, Synthesizer 4-2
4-2.3.2 LO Multiplier (Figure 7-4) 4-4
4-2.3.3 Dual Shaper Board (Figure 7-3) 4-4
MAINTENANCE
5-1 General 5-1
5-2 Preventive Maintenance 5-2
5-3 Troubleshooting 5-3
5-3.1 A2, Dual Shaper Board 5-3
5-3.2 A1, Lowpass Filter 5-3
5-3.3 A3, RF Chassis 5-3
5-3.4 A4, Frequency Synthesizer 5-4
5-4 Alignment 5-4
5-4.1 Overall Alignment 5-5
5-4.2 Noise Figure Check 5-8
5-4.3 Gain Reduction Alignment 5-8
5-5 Assembly/Disassembly 5-8

Table of Contents, continued

Section.	Title	Page
VI	REPLACEABLE PARTS LIST	
	6-1 General . . .	6-1
	6-2 Base Chassis	6-1
	6-3 A1, Lowpass Filter .	6-2
	6-4 A2, Dual Shaper Board	6-3
	6-5 A3, RF Chassis . .	6-4
	6-6 A4, Synthesizer.	6-9
	6-6.1 A4A3, Display Card Assembly .	6-9
	6-6.2 A4A4, Digital Interface Module	6-10
VII	MAINTENANCE DIAGRAMS	
	7-1 Introduction . .	7-1
	LIST OF ILLUSTRATIONS	
Figure	Title	Page
3-1	Remote Programming, Timing Diagram .	3-2
4-1	Digital Interface Module, Block Diagram	4-5
5-1	A2, Dual Shaper Board, Component Location Drawing	5-9
7-1	Main Chassis Wiring Diagram	7-3
7-2	A1, Lowpass Filter, Schematic Diagram . .	7-5
7-3	A3, Dual Shaper Board, Schematic Diagram	7-6
7-4	A2, RF Chassis, Schematic Diagram .	7-7
7-5	A4A3, Display Card Assembly, Schematic Diagram	7-9
7-6	A4A4, Digital Interface Module, Schematic Diagram	7-11

LIST OF TABLES

Page
1-1 Specifications . 1-2
5-1 Test Equipment . 5-1
5-2 RF Chassis Voltage Chart (Static)

Courtesy of http://BlackRadios.terryo.org

SECTION I
GENERAL DESCRIPTION

1-1 SCOPE

This manual provides information pertaining to the installation, operation, and maintenance of the Model 1112-VT(SYN) RF Tuner designed and manufactured by Microdyne Corporation, Rockville, Maryland. A replacement parts list and maintenance diagrams are also included herein. The 1112-VT(SYN) is covered under U. S. Patent No. 3, 703,689.

1-2 PURPOSE AND CAPABILITIES
The Model 1112-VT(SYN) RF Tuner designed for use in Mic rodyne single channel fm receivers, offers the ease, convenience and stability of synthesized tuning. Fast frequency selection is accomplished through either a front panel keyboard or from a remote location. A digital readout displays the frequency selected from either the local or the remote location.

The $1112-\mathrm{VT}$ (SYN) operates over the frequency range of 215 MHz to 320 MHz . Step frequencies are 100 kHz enabling selection of any standard IRIG channel. Using the parent receiver's second l-o fine tuning, the operator has complete coverage of the entire frequency band.

Remote selection of frequency is accomplished simply by externally programming the BCD code equivalent of the desired rf frequency.

The 1112-VT(SYN) RF Tuner features electronically tuned four-pole preselection and 1-o multipliers. A digital-to-analog converter translates the locally or remotely selected BCD code to the proper tuning voltage, thereby all tuning is accomplished by digital selection.

The rf tuner is constructed as a complete front panel plug-in module. All signal and power connections between the tuner and receiver are made automatically upon installation through a push-on coaxial connector and a miniature ribbon-type connector.

Table 1-1. Specifications

SECTION II
INSTALLATION

2-1 GENERAL

The rf tuner is shipped separately from the receiver in which it is to be installed. It is sealed in a polyethylene bag, wrapped in shock absorbing insulation, and packaged in a rugged shipping container.

2-2 UNPACKING AND HANDLING

Upon receipt of the tuner carton, cut the sealing tape and lift the package from the box. Open the bag and remove the tuner. (Do not discard the packing material if the unit is to be reshipped; see paragraph 2-6.) Check the tuner for intransit damage; broken connectors, dents, etc. If damaged, notify the proper authority immediately.

2-3 STORAGE

Storage conditions should be within the environmental limits specified in table 1-1.

2-4 INSTALLATION

The tuner is held in place in the receiver with a module lock and spring actuated latch handle. To install the module, move the lock portion of the mechanism up and pull the handle marked PULL forward. Insert the tuner into the receiver slot. Return the PULL handle to its original position until the locks snap into place.

2-5 REMOVAL

To remove the tuner from the receiver, lift the module lock up to disengage the release. Pull the handle marked PULL forward and slide the tuner out of the receiver.

2-6 PACKAGING FOR RESHIPMENT

To package the tuner for reshipment, proceed as follows:
a. Place the tuner and a quantity of desiccant into a moisture-proof polyethylene bag and seal.
b. Place the unit in a cardboard container, preferably a padded type, using enough shock absorbing material to prevent any movement within the carton.
c. Seal the carton.
d. Affix the necessary "Delicate Equipment" and "Fragile" labels.

SECTION III
OPERATION

3-1 INTRODUCTION

This section provides the operating procedures only for the rf tuner and should be used in conjunction with the overall operating procedure for the parent receiver.

The tuner is activated upon the application of receiver power, regardless of the position of the 1ST LO switch on the receiver. Thus, the receiver cannot be slaved when SYN(VT) series tuners are employed; the 1ST LO $\mathbb{N} p$ put, J4, (if wired) is not functional.

3-2 OPERATING INSTRUCTIONS

The rf tuner may be operated either in the local or in the remote mode. In the local mode, frequency selection is by means of the front panel keyboard. In the remote mode, frequency selection is by the application of an appropriate BCD code. In both cases, the operating frequency is selectable in 100 kHz steps over the range of the tuner.

3-2.1 LOCAL MODE

a. Place the tuner in the local mode, the local indicator should be lit. If necessary, select the local mode by depressing the \# key.
b. Depress the enter key, *.
c. Program the desired frequency on the keyboard. The display will indicate the selected frequency.

3-2.2 REMOTE MODE

Six control lines are required for remote programming of the tuners. These control lines are wired through the receiver to pin 12 (BCD 8), pin 10 (BCD 4), pin 9 (BCD 2), pin 8 (BCD 1), pin 13 (initiate), and pin 22 (advance) of the tuner receptacle.

Initiate Line
This line is used to set up the internal logic such that it is ready to display and enter the BCD digits starting from the left most position. This line must be taken from a logical HIGH to a logical LOW and back to a logical HIGH. This sequence prepares an internal counter for reception of the most significant digit.

Courtesy of http://BlackRadios.terryo.org

Advance Line

The advance (Positive TTL Pulse) is a strobing pulse used to advance the digit counter so that each BCD digit value is updated on the display.

BCD Lines
The BCD lines are for frequency selection. TTL, BCD positive signals are required:

$$
\begin{aligned}
& \text { Logical HIGH }-3-4.5 \mathrm{~V} \text { DC } \\
& \text { Logical LOW }-0-0.3 \mathrm{~V} \text { DC }
\end{aligned}
$$

The BCD information for each digit must be applied in a sequential manner.

Entry Sequence

a. The Initiate Line must sequence from a HIGH to a LOW to a HIGH; a minimum LOW time of 10 milliseconds is required. The Initiate Line must remain HIGH during frequency entry.

Present the first digit's BCD TTL data on the BCD lines. The minimum amount of time this BCD information must be present is 10 milliseconds.

After the BCD data is stabilized (or approximately 5 milliseconds after entry of the $B C D$ data) the pulse advance signal is entered to update the display.
d. Allow a minimum of 10 milliseconds, enter the second BCD digit, and permit stabilization as in step c, and enter the advance pulse.
e. Repeat steps c and d for the remaining $B C D$ entries. During the 10 millisecond delay between BCD entries, the BCD lines can assume any state.

Figure 3-1. Remote Programming, Timing Diagram

SECTION IV
THEORY OF OPERATION

4-1 GENERAL

The $1112-\mathrm{VT}(\mathrm{SYN}) \mathrm{RF}$ Tuner is utilized to select a single frequency in the 215 MHz to 320 MHz range and down converts this selected frequency to 50 MHz for further processing in the receiver. The tuner employs synthesized tuning which permits, either from the front panel keyboard or by the external application of a coded BCD signal, the selection of any standard IRIG channel within the spectrum. The receiver's fine tune control (second l-o) can be used to select between the 100 kHz step frequencies.

The $215-320 \mathrm{MHz} \mathrm{rf}$ input signal is applied through a lowpass filter to a voltage-tuned rf amplifier whose output is applied to a mixer. In the mixer the rf signal is heterodyned with a local oscillator signal to produce a 50 MHz i-f signal. This 50 MHz signal is then applied through an i-f amplifier to the receiver i-f circuitry.

The local oscillator signal is generated by the frequency synthesizer system. The system consists of a frequency entry subsystem and a frequency synthesizer subsystem. The frequency entry subsystem decodes the selected BCD input from the keyboard or from the external source to generate a digital frequency word. This word is used to drive the front panel display and used by the frequency synthesizer subsystem to generate the fundamental l-o signal. The l-o signal is multiplied and filtered to supply a mixer injection signal that is 50 MHz above the rf signal.

4-2 CIRCUIT DESCRIPTION

The applicable schematic diagram in Section VII should be referenced during the following discussions.

4-2.1 RF CIRCUITRY (Figure 7-4)
The $215-320 \mathrm{MHz}$ rf signal is applied through lowpass filter A1 (figure 7-2) to J1 on the rf chassis A3.

In the rf chassis, the rf signal is applied through impedance matching transformer L4 to double-tuned circuit CR1-CR4. The signal is then coupled to rf amplifier Q1-Q3 which is configured as a differential amplifier driven from a constant current source. In actual operation, however, Q1 and Q3 function as a cascode amplifier with Q2 operating as a signal shunt for gain control purposes. Gain control voltage from the receiver is applied to the gate of Q3 via sensitivity adjustment R18. Since the total flow through the differential stage is held constant by Q1, any change in the current flow through Q3 caused by the biasing effects of the age voltage will be compensated for by an increased or decreased current flow through Q2. For example, if the age voltage applied to Q3 caused the current through Q3 to decrease, the current through Q2 would increase by a corresponding amount thereby shunting a larger portion of the signal out of the signal path. This configuration and method of
gain minimizes the effects of load changes on the amplifier bandpass and enhances the large signal handling capability of the tuner. The output of the amplifier is taken from the drain of Q3 and applied through a second double-tuned circuit (CR5-CR8) to the mixer Q4.

The double-tuned input and output stages of the amplifier are tuned by a control voltage applied to the cathode of tuning elements CR1 through CR8. This voltage is provided by the dual shaper board A2 and is employed to adjust the capacitance of the tuning elements to set the resonant frequency of the tuned circuit. CR1, CR4, CR5, and CR8 are utilized to control the resonance of the circuits and elements CR2, CR3, CR6, and CR7 are utilized to maintain the 7.5 MHz bandwidth by constantly optimizing the coupling.

4-2.2 FIRST MIXER AND IF AMPLIFIER (Figure 7-4)
Mixer Q4 accepts the rf input from the rf amplifier and the $1-0$ input from the oscillator multiplier chain. The two signals are heterodyned to produce a 50 MHz intermediate frequency (i-f). This signal is further amplified by Q5 and applied to the tuner i-f output at P1A1 for application to the receiver i-f circuitry. An output impedance of 50 ohms is established by the collector circuit of Q5 for interface purposes.

4-2.3 LOCAL OSCILLATOR
The local oscillator comprises A4 synthesizer, A2 dual shaper board, and multiplier circuitry located in A3.

4-2.3.1 A4, SYNTHESIZER - The synthesizer can be functionally subdivided into a frequency entry subsystem and a frequency synthesizer subsystem. The frequency entry subsystem consists of the frọnt panel keyboard A4A2, the digital interface module A4A4, and the display assembly A4A3. The frequency synthesizer subsystem consists of the synthesizer module A4A1.

The frequency entry subsystem processes the remote or local frequency selection to generate a corresponding digital frequency word. The latter (four-digit BCD) is:
a. Applied to the display which provides a readout of the selected frequency.
b. Converted to an analog voltage which functions (after processing by the dual shaping board) as the tuning voltages for the rf amplifier and the l-o multiplier circuitry.
c. Applied through a 50 MHz adder circuit (which compensates for the 1-0 injection signal being 50 MHz above the incoming rf signal) to the frequency synthesizer.
d. Processed to generate a crystal oscillator frequency select control signal for the frequency synthesizer.

Reference figures 4-1 and 7-6. Frequency entries may be made either from the front panel keyboard or through remote BCD input lines. The keyboard entries appear on the appropriate lines at the input (J4) to the digital interface module. Here, the selections are applied to U1, the keyboard decoder. U1 generates a $B C D$ code equal to the numerical value of the depressed keys. This BCD is outputted from U1 at pins 22 (LSB), 21, 2, and 3 (MSB), and inputted to data multiplexer U22. U1 also outputs a strobe pulse at pin 4 which is routed through inverter U8 to U9. U9, a one-shot multivibrator, generates a clock pulse which is applied to data multiplexer U23. Also applied to U23 is the decoded (by Q1) local enter command.

The remote BCD word is applied to pins $14,11,5$, and 2 of data multiplexer U22. The remote enter (initiate) command and the remote clock (advance) are applied to pins 5 and 2, respectively, of U23.

The acceptance of either the remote or local data depends on the status of the remote/local control line at pin 1 of U22 and U23. The front panel remote/local switch selection is made available at E4 and routed to Q2. The output of Q2 pulses a flip-flop formed from crosscoupled NAND gates U7. The pulse from U7 drives a binary counter U6 whose output determines the local/remote condition. The local/remote control line at pin 1 of multiplexers U22 and U23 will be a logic high when the tuner is in the local mode. The binary counter U6 also drives the front panel local and remote indicators.

The BCD output of data multiplexer U22 applied to the inputs for four stage registers, U16 through U19. A particular BCD value is loaded into only one of the four registers. The loading of the registers is controlled by a digit-load decoder formed by decode counter U4 and one-of-ten decoder U10. U4 and U10 form a ring counter. In the local mode, this counter is initialized to zero when the enter key is depressed and in the remote mode, when the initiate line is activated (logic low). The counter is advanced by the internally generated clock pulses (local mode) or by the activation of the advance line (remote mode). The output lines of the counter are jumpered to the load lines of the individual storage registers. The ring counter sequences the registers to permit loading the registers U19 through U16 (LSD) sequentially.

One-of-ten decoder U11, in conjunction with gates U3 and U5, inhibits any undesirable MSD and LSD digits. After the initial programming of the desired five-digit frequency word, four additional entries will inhibit any digit updates, but subsequent entries will cause the ring counter to re-sequence with undesirables or false entries. The storage registers will indefinitely hold the frequency BCD word unless there is a power interruption.

The frequency BCD word in the storage registers is routed directly to the display module A4A3 where it is decoded for use in driving the front panel readout. The BCD word is also routed to U12 and U13, BCD adders. Here, the value of the word is increased by 50 MHz to compensate for the i-f offset. The resultant word is applied to the frequency synthesizer.

The LSD in U16 is routed to the frequency synthesizer module as the 0.5 MHz step control. The frequency BCD word from the storage register is further applied to U2, a digital-toanalog converter. This D/A converter, along with shaping operational amplifiers U14 and U15, generates the drive voltage for the dual shaping board A2.

The display board circuitry is shown in figure 7-5. U1 through U5 are high voltage decoder drivers which drive the 180 V dc Beckman gas discharge displays used for the readout. These decoder drivers convert the four bit BCD inputs from the digital interface module to seven line outputs for driving each line of the displays. The power supply for the displays is located on the digital interface board.

In the frequency synthesizer module, the 0.5 MHz step control from the digital interface board functions as a 0.5 MHz step control for a crystal oscillator. The BCD frequency word from the digital interface board is applied to a digital divider. The crystal oscillator and the digital divider are part of a phase lock loop circuit that controls a voltage-controlled oscillator which generates the fundamental 1-o signal.

4-2.3.2 LO MULTIPLIER (Figure 7-4) - The $66.25-92.5 \mathrm{MHz}$ output of the frequency synthesizer is coupled to $J 6$ on the rf chassis. From $J 6$ the fundamental $1-0$ signal is applied to the 1-o multiplier circuit consisting of Q6 through Q9.

Transistor stage Q9 functions as a buffer amplifier whose output is applied to driver Q8. Q8 provides the drive for the 1-o monitor output at J5 and for driving doubler Q7. The tuning of this doubler is by means of a tuning voltage applied across diodes CR12, CR13, and CR14; diodes CR14 and CR12 control the tuning and CR13 maintains the correct bandwidth. This tuning voltage is generated in the frequency synthesizer and routed through the dual shaper board to the 1-o multiplier. Inductors L14 and L13 are used to match the impedance between the tuned stages.

The 132.50-185 MHz output of Q7 is applied to a second doubler stage Q6, which is tuned in the same manner as Q7. The resultant $265-370 \mathrm{MHz}$ l-o injection signal is coupled to the mixer.

4-2.3.3 DUAL SHAPER BOARD (Figure 7-3) - The function of the dual shaper board is to process (shape) the analog voltage developed from the BCD frequency word by the frequency synthesizer into tuning voltages for the rf amplifier stages and for the l-o multiplier stages.

The input to the dual shaper board ranges from 0 V to $+5 \mathrm{~V}(215 \mathrm{MHz}-320 \mathrm{MHz})$ and is supplied by the digital interface board. The voltage is applied to E1 on the shaper board where it is routed to two independent operational amplifier circuits, U1 and U2. U1 provides the tuning voltage for the rf amplifier stages and U2 provides the tuning voltages for the 1-o multiplier stages. Each stage has a shaping network to ensure tracking between the local oscillator and the tuned circuits.

The output of the rf shaping network ranges from $+2.49 \mathrm{~V}(215 \mathrm{MHz})$ to $+13.90 \mathrm{~V}(320 \mathrm{MHz})$. The 1-o shaping network outputs a tuning voltage ranging from $+2.4 \mathrm{~V}(215 \mathrm{MHz})$ to +13.8 V (320 MHz).

Figure 4-1. Digital Interface Module, Block Diagram

SECTION V
MAINTENANCE

5-1 GENERAL

This section provides the recommended maintenance procedures for the $1112-\mathrm{VT}$ (SYN) Tuner. These procedures include preventive maintenance, troubleshooting, and alignment instructions, The test equipment required for servicing the tuner is listed in table $5-1$; direct equivalents may be used.

Table 5-1. Test Equipment

Oscilloscope	HP1202A
Sweep Generator	Texscan VS-50
Spectrum Analyzer	HP141T/8553B/8552A
Frequency Counter	HP5245L
Frequency Converter	HP5253B
RF Detector	HP8471A
Digital Voltmeter	Fluke 8300A
RF Millivoltmeter	HP3406A
VHF Noise Source	HP343A
Noise Figure Meter	HP342A
Power Amplifier	Boonton 230A
Rhotector Kit	Telonic TRK-2A
BNC to Selectro Adapters (2)	Sealectro 50-077-6801
Extender Cables	Microdyne 200-452, 200-453
Test Cable	Microdyne 200-729
Signal Generator	HP608

The extender cables listed in table 5-1 allow access to the tuner circuitry while connected to the receiver. If desired, the cables may be fabricated as follows:
a. Obtain the following material:

1. RG174/U cable - length should be sufficient to make three equal-length cables approximately three feet long.
2. RG223/U cable, approximately three feet long.
3. One roll of \#24 insulated multistrand wire.
4. One set Cannon DCM-25W3P and DCM-25W3S connectors with coaxial inserts.
5. One Gremar 11749-1 and one Gremar 16908-1 connector.
b. Cut the \#24 wire into twenty-two three-foot lengths and make connections between corresponding pins of the two Cannon connectors.
c. Connect the RG174/U cable between corresponding coaxial inserts in the two Cannon connectors (A1-A2-A3). These inserts should not be permanently affixed to connectors since they must be removed for alignment. This completes fabrication of the i-f/power cable.
d. Connect the Gremar 11749-1 and 16908-1 connectors to the length of RG223/U cable. This completes fabrication of the rf cable.

5-2 PREVENTIVE MAINTENANCE

Preventive maintenance requirements consist of periodic visual inspection and certain performance checks.

The visual inspection should include a check of the connectors for looseness and corrosion, electrical components for evidence of overheating, and screws and nuts for looseness. All loose hardware should be tightened immediately. Damaged components should be replaced after determining and correcting the source.

Performance checks should include:
a. Noise Figure - See paragraph 5-4.2.
b. LO Frequency -

1. Connect the HP5245L/HP5253B counter to the receiver first I-o monitor output.
2. Check and note the frequency at the low, middle, and high ends of the band.
3. Multiply the counter indication by 4 and subtract 50 MHz . The resultant frequency should be within 0.1% of the display indication.
4. Disconnect the counter.
c. Transfer Gain - See paragraph 5-4.3.

5-3 TROUBLESHOOTING

Once it is determined that a malfunction exists in the tuner, troubleshooting should consist of those steps necessary to isolate the fault to one of the functional areas; rf section, frequency synthesizer, l-o multiplier, or i-f amplifier.

LO Frequency

A check of the l-o signal provides a check of the frequency synthesizer and of the multiplier chain. LO test points are given below.

A3J2 - LO injection frequency, $265-370 \mathrm{MHz}, 0$ (low end) to -12 dBm (high end), 50 dBm load.
A3J5 - LO monitor output, $1 / 4$ injection frequency, greater than $-5(\pm 1) \mathrm{dBm}$.
A4A1-J4 - Frequency synthesizer output, $1 / 4$ injection frequency, 0 to +3 dBm .
If the $1-\mathrm{o}$ frequency at J 5 of the rf chassis is incorrect, check the local oscillator calibration adjustment on the frequency synthesizer; see steps a through g of paragraph 5-4.1. Ensure a suitable warmup time is allowed before the adjustments are attempted.

Gain
A check of the transfer gain will provide a check of the lowpass filter, the rf amplifier, mixer and i-f amplifier. Check the gain using the procedures given in paragraph 5-4.3. The lowpass filter hasa 0.5 dB insertion loss.

The above should enable the isolation of any fault to one of the functional areas. A troubleshooting guide for the modules is given in the following paragraphs.

5-3.1 A2, DUAL SHAPER BOARD

The dual shaper board receives its drive voltage from the frequency synthesizer and should range between 0 V dc and 5.00 V dc. The shaper board should output an rf tuning voltage ranging between +2.49 and +13.90 V dc. The shaper board should output a l-o tuning voltage ranging betqeen +2.4 V and 13.8 V . Voltage measurements are recommended in troubleshooting the board.

5-3.2 A1, LOWPASS FILTER

To troubleshoot the filter, conduct steps ac through ah of the alignment procedures given under paragraph 5-4.1.

5-3.3 A3, RF CHASSIS
The rf chassis contains the rf amplifier, mixer, 50 MHz i-f amplifier, and the l-o multiplier circuits. The recommended troubleshooting procedure is to attempt the applicable positions of the alignment procedure (paragraph 5-4.1). This should enable the isolation of any fault to a stage. Reference de voltages are given in table 5-2.

Table 5-2. RF Chassis Voltage Chart (Static)

Device	E	B	C	\underline{S}	G	D
Q1	-10.3	- 9.6	+ 0.9			
Q2				+0.9	-0.91	+14.8
Q3				+0.9	0	+14.8
Q4	-7.9	- 7.2	+14.6			
Q5	-12.2	-11.4	- 0.14			
Q6	+6.1	+ 6.8	+14.7			
Q7	+ 6.5	+ 7.1	+14.9			
Q8	-8.6	-7.9	-1.3			

5-3.4 A4, FREQUENCY SYNTHESIZER

The first step is to isolate the problem to one of the modules that composes the frequency synthesizer. This requires familiarity with the function of each module as given in Section IV of this manual. A limited fault isolation chart is given below.

Fault
Local operation/no remote operation Remote operation/no local operation No display
DC control board drive Fundamental 1-o signal No display or l-o signal

Probable Cause

A4A4 - L/R decoder circuit
Keyboard, A4A4 - Keyboard decoder
A4A3, A4A4 - 180 V dc supply
A4A4 - D/A converter
A4A1, A4A4 - BCD adder
A4A4 - multiplexers, storage registers, digit-load decoder

The keyboard A4A2 and the frequency synthesizer module A4A1 are considered nonrepairable. The display board A4A2 and the digital interface board A4A14 are repairable. Check the logic chips of the suspected circuit.

5-4 ALIGNMENT

After any repair to the tuner circuitry, realignment of the affected circuitry is usually required. The following procedures provide the alignment instructions for the complete tuner. However, when minor repairs are limited to one functional area, only those procedures dealing with this circuitry need be conducted.

The tuner is connected to the receiver using the extender cables called out in table 5-1 for alignment. The signal inputs to the tuner may be made at the rf input connector on the receiver. The connections to the i-f output (P11-A3) of the tuner may be made at A1 of XA4 (i-f filter receptacle) of the receiver using the $200-729$ test cable. The filter must be removed, if used, to make this connection.

5-4. 1 OVERALL ALIGNMENT
Steps a through i of the following procedures are required after any repairs.
a. Connect the tuner to the receiver using the extender cables. Apply power to the receiver. On the receiver, using the Manual Gain control, set the tuner agc voltage to -0.5 ($\mathrm{P} 11-7$).
b. Program the tuner to 215.0 MHz LOCAL using the keyboard on the front panel. The LOCAL LED should be on and the digital readout should display 215.0.
c. Connect the digital voltmeter to TP2 on the dual shaper board.
d. Adjust $A 4 R 8$ offset (digital interface board) for 0.00 V on the voltmeter.
e. Program the tuner to 320 MHz .
f. Adjust A4R5 Range for an indication of 5.00 V on the voltmeter.
g. Repeat steps b through f until the correct voltages are obtained at the two ends of the board.
h. Program the tuner to 215 MHz and connect a frequency counter to P11-A1 (or to the 1 st LO output connector on the receiver).
i. The counter should indicate 66.25 MHz ; if necessary, adjust the LO ADJ on the frequency synthesizer module $A 4 A 1$ for the correct counter reading.

Dual Shaper Board

Steps j through o are required only if repairs are made to the dual shaper board.
j. Program the tuner to 320 MHz .
k. On the dual shaper board:

Adjust R1 for +1.250 V at TP1.
Adjust R14 for +1.52 V at TP4.
Adjust R2 for +13.90 V at TP3.
Adjust R15 for +13.8 V at TP5.

1. Program the tuner to 260 MHz .
m. On the dual shaper board:

Adjust R7 for +6.93 V at TP3. Adjust R20 for +6.3 V at TP5.
n. Program the tuner to 215 MHz .
o. On the dual shaper board:

Adjust R8 for +2.49 V at TP3. Adjust R 21 for +2.4 V at TP5.

LO Multiplier

p. Connect the sampling voltmeter with tee probe and 50 ohm load to A3J2.
q. Program the tuner to 320 MHz . Adjust C53, C48, C43, and C38 for maximum voltmeter indication.
r. Program the tuner to 215 MHz . Adjust L14, L13, L12, and L11 for maximum voltmeter indication.
s. Repeat steps q and r for maximum voltmeter indication at 215 MHz and at 320 MHz .
t. Program the tuner to 305 MHz .
u. Adjust R14 on the dual shaper board for maximum voltmeter indication.
v. Program the tuner to 320 MHz .
w. Adjust R15 on the dual shaper board for maximum voltmeter indication.
x. Because R14 and R15 interact with each other, it is necessary to repeat steps t through w until maximum voltmeter indication is obtained at 305 MHz .
y. Program the tuner to 260 MHz .
z. Adjust R20 on the dual shaper board for maximum voltmeter indication.
aa. Program the tuner to 215 MHz .
ab. Adjust R21 on the dual shaper board for maximum voltmeter indication.

RF Circuits

ac. Remove power from the receiver. Connect the sweep generator to the rf input of the receiver (J 1 of the tuner) and a 50 ohm detector to A1J2 (lowpass filter). Set the generator for a -30 dBm output.
ad. Adjust L1, L2, and L3 of the lowpass filter for a flat response. Insertion loss should be less than 0.5 dB at 320 MHz .
ae. Connect a 50 ohm termination to A1J2. Using the rhotector, calibrate the oscilloscope with the 1.4:1 VSWR load.
af. Connect the rhotector to the rf input of the receiver.
ag. Readjust, if necessary, L1, L2, and L3 of the lowpass filter for a VSWR of less than 1.4:1 across the band of $215-320 \mathrm{MHz}$.
ah. Remove termination and reconnect the filter into the tuner. Disconnect P6 from A3J6 (rf chassis), on the receiver, select automatic gain control.
ai. Program the tuner to 320 MHz and adjust C 2 and C 7 on the rf chassis for a VSWR of less than $1.5: 1$ at 320 MHz .
aj. Program the tuner to 215 MHz and adjust L1 and L2 for a VSWR of less than $1.5: 1$ at 215 MHz .
ak. Repeat steps ai and aj for lowest VSWR at 215 MHz and at 320 MHz .
al. Connect the sweeper to the rf input of the receiver. Set sweeper output for -30 dBm .
am. Connect a detector to A3J2 (rf chassis). Connect the detector output to the oscilloscope.
an. Program the tuner to 320 MHz . Adjust C18 and C23 on the rf chassis for a double-tuned response centered at 320 MHz .
ao. Program the tuner to 215 MHz and adjust L5 and L6 for a double-tuned reresponse centered at 215 MHz .
ap. Repeat steps ap and aq until optimum tracking is obtained.
aq. Program the tuner to 305 MHz .
ar. Adjust R1 on the dual shaper board to center the rf response at 305 MHz .
as. Program the tuner for 320 MHz and adjust R 2 on the dual shaper board to center the rf response at 320 MHz .
at. Repeat steps aq through as until the rf response is centered at 305 MHz and 320 MHz .
au. Program the tuner to 260 MHz . Adjust R7 on the dual shaper board to center response.
av. Program the tuner to 215 MHz and adjust R 8 on the dual shaper board to center response.
aw. Reconnect P6 to A3J6.

IF Amplifier

ax. Temporarily remove Q6 from its socket.
ay. Connect a 50 ohm detector to P11A3 (A3J3).
az. Connect the sweep generator to A3J2.
ba. Set the output of the sweep generator for 50 MHz at -10 dBm .
bb. Adjust L7 and L8 on the rf chassis for a response centered at 50 MHz and a 3 dB bandwidth of approximately 6.0 MHz .
bc. Disconnect the sweep generator and the detector. Reinstall Q6 in its socket.

5-4.2 NOISE FIGURE CHECK

a. Connect the noise figure meter to the Boonton 230 A rf amplifier and connect P11-A3 (i-f output) on the tuner to the 230A.
b. Connect the noise source to the rf input of the receiver.
c. Program the tuner to 215 MHz and note the noise figure on the meter. Program the tuner to 320 MHz and measure the noise figure. The noise figure should not exceed 7.0 dB. Disconnect the test equipment.

5-4.3 GAIN REDUCTION ALIGNMENT

a. Program the tuner to 250 MHz .
b. Connect an HP608 signal generator, set to 250 MHz at -40 dBm , to the rf input of the receiver. Connect an rf voltmeter to the i-f output (P11-A3) of the tuner.
c. On the receiver, set the Mamual Gain Control for tuner age of 0.0 V dc at P11-7.
d. Adjust R30 on the rf chassis until the transfer gain, as indicated on the voltmeter, is $16(\pm 0.5) \mathrm{dB}$.
e. Set the age to -5.0 V using the Manual Gain Control.
f. Adjust R20 on the rf chassis for maximum gain reduction.

5-5 ASSEMBLY/DISASSEMBLY

The design of the tuner permits access to all repairable modules for alignment and test. The dual shaper board must be removed to permit repairs; it does not require disconnecting from the tuner circuitry. The lead lengths permit positioning the module outside the tuner chassis, allowing access to the circuit board.

CAUTION

After any repairs in and around the synthesizer, before applying power, measure the resistance between A4A4-E3 and ground ($>400 \mathrm{~K}$). A short at this point will damage the 180 V power supply (display readout) located on A4A4.

The digital interface module A4A4 is readily accessible. It is recommended that repairs be attempted as replacement is complicated due to the number of interconnections.

To gain access to the display card A 4 A 3 , the front panel must be removed. This requires the removal of the latches. As with the digital interface module, repairs should be attempted as replacement is complicated.

A component located drawing for the dual shaper is provided below. Modules A4A3 and A4A4 have the integrated circuits identified on the boards. Adjustable components on the rf chassis are identified.

Figure 5-1. A2, Dual Shaper Board, Component Location Drawing

SECTION VI
REPLACEABLE PARTS LIST

6-1 GENERAL

This section contains the replaceable parts list for the 1112-VT(SYN) Synthesized RF Tuner. Components are listed alphanumerically by subassembly and provide the reference designator, description, manufacturer, and manufacturer's part number. Include all information when ordering spare or replaceable components.

6-2 BASE CHASSIS

Reference
Designation

Description

A1 Lowpass Filter, Microdyne 103-344; see paragraph 6-3 for breakdown listing.
A2 Dual Shaper Board, Microdyne 103-398; see paragraph 6-4 for breakdown listing.
A3 RF Chassis, Microdyne 103-336; see paragraph 6-5 for breakdown listing.
Synthesizer, Microdyne 103-333-1; see paragraph 6-6 for breakdown listing

C1 Capacitor, ceramic, $220 \mathrm{pF} \pm 20 \%, 100 \mathrm{~V}$, Erie $8111-100-\mathrm{X} 5 \mathrm{R}-221 \mathrm{M}$
DS1 Light Emitting Diode, (red), HP5082-4440
DS2

J1 Connector, p/o W1, Gremar 16908-1
P1 Connector, p/o W1, UG1465/U
P2
Connector, p/o W2, UG1465/U
Connector, p/o W2, UG1465/U
Connector, p/o W3, UG1465/U
Connector, p/o W4, UG1465/U
Connector, p/o W5, UG1465/U
Connector, p/o W5, Phelps Dodge 546-001
Connector, p/o W6, Phelps Dodge 522-004
Connector, p/o W6, Phelps Dodge 522-004
P10
P11 Connector, Cannon DCM25W3P
Connector, p/o W7, Phelps Dodge 522-004
P11A1 Insert, p/o W4, Cannon DM53740-1
P11A2 Not Assigned
P11A3 Insert, p/o W3, Cannon DM53740-1

Courtesy of http://BlackRadios.terryo.org

1112-VT(SYN)

Replaceable Parts List - Base Chassis, cont'd.
Reference
Designation

P12 Connector, p/o W7, Phelps Dodge 522-004
P13
thru Connector, dip, 3M 3416-0002
P19

W1
W2
W3
W4
W5
W6
W7
Cable Assembly, Microdyne 201-842-7
Cable Assembly, Microdyne 201-941-10
Cable Assembly, Microdyne 201-845-14
Cable Assembly, Microdyne 201-845-9
Cable Assembly, Microdyne 201-961-25
Cable Assembly, Microdyne 203-650
Cable Assembly, Microdyne 203-669

6-3 A1, LOWPASS FILTER
Reference
Designation

C1
C2
C3
C4
E1
E2

L1
L2
L3

Capacitor, ceramic, $4.3 \mathrm{pF} \pm 0.25 \mathrm{pF}, 100 \mathrm{~V}$, Erie $8101-100-\mathrm{COG}-439 \mathrm{C}$ Capacitor, ceramic, $9.1 \mathrm{pF} \pm 0.25 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-919C Capacitor, ceramic, $9.1 \mathrm{pF} \pm 0.25 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-919C Capacitor, ceramic, $4.3 \mathrm{pF} \pm 0.25 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-439C

Termination, standoff, teflon, Sealectro ST-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1
Connector, UG1619/U
Connector, UG1619/U
Inductor, Microdyne 201-129
Inductor, Microdyne 201-130
Inductor, Microdyne 201-129

Replaceable Parts List, continued

6-4 A2, DUAL SHAPER BOARD

Reference
Designation
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10

CR1
thru Diode, JEDEC 1N462A
CR4

E1
E2
E3
E4
E5
E6
E7
E8

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
1 Termination, AMP 61067-1

Description

Capacitor, ceramic, $1000 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8111-100-\mathrm{X} 5 \mathrm{R}-102 \mathrm{M}$
Capacitor, tantalum, $1 \mu \mathrm{~F} \pm 20 \%$, 35 V , Sprague 150 D 105 X 0035 A 2
Capacitor, ceramic, $1000 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8111-100-\mathrm{X} 5 \mathrm{R}-102 \mathrm{M}$
Capacitor, ceramic, $51 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie 8131-100-COG-510J
Capacitor, ceramic, $1000 \mathrm{pF} \pm 20 \%$, 100 V , Erie 8111-100-X5R-102M
Capacitor, ceramic, $1000 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8111-100$-X5R-102M
Capacitor, tantalum, $1 \mu \mathrm{~F} \pm 20 \%$, 35V, Sprague 150D105X0035A2
Capacitor, ceramic, $51 \mathrm{pF} \pm 20 \%$, 100 V , Erie 8131-100-COG-510J
Capacitor, ceramic, $1000 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8111-100$-X5R-102M
Capacitor, ceramic, $1000 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8111-100$-X5R-102M

Potentiometer, 100K, Bourns 3299X-1-104
Potentiometer, 1 Meg, Bourns 3299X-1-105
Resistor, metal film, $1 \mathrm{M} \Omega \pm 1 \%, 1 / 8 \mathrm{~W}$, RN55D1004F
Resistor, metal film, $2 \mathrm{M} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D 2004 F
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, metal film, $10 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D1002F
Potentiometer, 1 Meg , Bourns 3299X-1-105
Potentiometer, 1 Meg, Bourns 3299X-1-105
Resistor, metal film, $1 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D1001F
Resistor, metal film, $68.1 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D6812F
Resistor, metal film, $56.2 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D5622F
Resistor, metal film, $51.1 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D5112F
Resistor, metal film, $33.2 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D3322F
Potentiometer, $100 \mathrm{~K} \Omega$, Bourns 3299X-1-104
Potentiometer, 1 Meg, Bourns 3299X-1-105
Resistor, metal film, $1 \mathrm{M} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D1004F

Courtesy of http://BlackRadios.terryo.org

1112-VT(SYN)

Replaceable Parts List - A2, Dual Shaper Board, cont'd.
Reference
Description
Designation
R17 Resistor, metal film, $2 \mathrm{M} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D2004F
R18
R19
R20
R21
R22
R23
R24
R25
R26
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, metal film, $10 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D1002F
Potentiometer, 1 Meg , Bourns 3299X-1-105
Potentiometer, 1 Meg , Bourns 3299X-1-105
Resistor, metal film, $1 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D1001F
Resistor, metal film, $68.1 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D6812F
Resistor, metal film, $56.2 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D5622F
Resistor, metal film, $51.1 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D5112F
Resistor, metal film, $33.2 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D3322F
TP1
thru Test Point, AMP 61067-1
TP5
U1 Operational Amplifier, RCA CA3130S
U2

XU1 Socket, 8-pin, Augat 508-AG1D
XU2
Socket, 8-pin, Augat 508-AG1D
6-5 A3, RF CHASSIS
Reference
Designation

C1
C2
C3
C4
thru
C6
C7
C8
C9
thru
C12
C13
C14
C15
C16

Capacitor, ceramic, $100 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100-\mathrm{X} 5 \mathrm{R}-101 \mathrm{M}$
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, ceramic, $2.4 \mathrm{pF} \pm 0.1 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-249B
Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, ceramic, $100 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100$-X5R- 101 M
Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, ceramic, $110 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie 8121-100-COG-111J
Capacitor, ceramic, $10 \mathrm{pF} \pm 5 \%$, 100V, Erie 8101-100-COG-100J
Capacitor, feedthru, $47 \mathrm{pF} \pm 20 \%$, Erie 2482-001-X5U-470M
Capacitor, feedthru, $47 \mathrm{pF} \pm 20 \%$, Erie 2482-001-X5U-470M

Replaceable Parts List - A3, RF Chassis, cont'd.

Reference
Designation

Description

C17
C18
C19
C20
thru
C22
C23
C24
C25
C26
C27
C28

C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
thru
C42
C43
C44
C45
C46
C47
C48
C49
C50
thru
C52
C53
C54
C55 C56

Capacitor, ceramic, $100 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100-\mathrm{X} 5 \mathrm{R}-101 \mathrm{M}$
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, ceramic, $0.75 \mathrm{pF} \pm 5 \%$, Quality Component M. C. 0.75, nominal value

Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, ceramic, $100 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100$-X5R-101M
Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, ceramic, $4.7 \mathrm{pF} \pm 0.25 \mathrm{pF}, 100 \mathrm{~V}$, Erie $8101-100$-COG-479C
Capacitor, ceramic, $0.91 \mathrm{pF} \pm 5 \%$, Quality Component M. C. 0.91 , nominal value
Capacitor, ceramic, $100 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100$-X5R1-101M
Capacitor, ceramic, $4.7 \mathrm{pF} \pm 0.25 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-479C
Capacitor, ceramic, $91 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie 8121-100-COG-910J
Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100 V , Erie $8131-\mathrm{B} 106-\mathrm{X} 5 \mathrm{~V}-103 \mathrm{M}$
Capacitor, ceramic, $43 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie $8121-100$-COG- 430 J
Capacitor, ceramic, $43 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie $8121-100-\mathrm{COG}-430 \mathrm{~J}$
Capacitor, ceramic, $47 \mathrm{pF} \pm 20 \%, 100 \mathrm{~V}$, Erie $8101-100$-X5R- 470 M
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, ceramic, $1.5 \mathrm{pF} \pm 0.1 \mathrm{pF}, 100 \mathrm{~V}$, Erie 8101-100-COG-159B
Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, ceramic, $47 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100$-X5R- 470 M
Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, ceramic, $10 \mathrm{pF} \pm 5 \%$, 100 V , Erie $8121-100-\mathrm{COG}-100 \mathrm{~J}$
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, ceramic, $0.75 \mathrm{pF} \pm 5 \%$, Quality Component M. C. 0.75
Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, variable, $0.8-8.5 \mathrm{pF}$, LRC 682237
Capacitor, ceramic, $30 \mathrm{pF} \pm 5 \%$, 100 V , Erie $8121-100-\mathrm{COG}-300 \mathrm{~J}$
Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-001-W5T-102P
Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-001-W6T-102P

Courtesy of http://BlackRadios.terryo.org

Replaceable Parts List - A3, RF Chassis, cont'd.

Reference
Designation
C57 Capacitor, ceramic, $20 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, Erie 8111-100-COG-200J
C58
C59
thru Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-100-W5T-102P
C61
C62
C63
C64

CR1
thru
CR4
CR5
CR6
CR7
CR8
CR9
thru
CR14

E1
E2
E3
E4
E5
E6
E7
E8
thru
E10
E11
E12
E13
E14
E15
thru
E17

J1
thru Connector, UG1619/U
J3
J4

Description

Capacitor, ceramic, $20 \mathrm{pF} \pm 5 \%$, 100V, Erie 8111-100-COG-200J

Capacitor, ceramic, $2 \mathrm{pF} \pm 0.1 \mathrm{pF}, 100 \mathrm{~V}$, Erie $8101-100-\mathrm{COG}-209 \mathrm{~J}$
Capacitor, feedthru, $0.001 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Erie 2482-100-W5T-102P
Capacitor, cdramic, $100 \mathrm{pF} \pm 20 \%$, 100 V , Erie $8101-100-\mathrm{X} 5 \mathrm{R}-101 \mathrm{M}$

Diode, Microdyne 301-476-1
Diode, Microdyne 301-476-2
Diode, Microdyne 301-476-1
Diode, Microdyne 301-476-1
Diode, Microdyne 301-476-2
Diode, Microdyne 301-476-1

Termination, standoff, teflon, Sealectro ST-SM-1
Termination, feedthru, teflon, Sealectro FT-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1
Termination, feedthru, teflon, Sealectro FT-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1
Termination, feedthru, teflon, Sealectro FT-SM-1

Termination, standoff, teflon, Sealectro ST-SM-1
Termination, feedthru, teflon, Sealectro FT-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1
Termination, feedthru, teflon, Sealectro FT-SM-1
Termination, standoff, teflon, Sealectro ST-SM-1

6-6

Replaceable Parts List - A3, RF Chassis, cont'd.

Reference Designation	Description
J5	Connector, UG1619/U
J6	Connector, UG1619/U
L1	Inductor, variable, Microdyne 201-298
L2	Inductor, variable, Microdyne 201-298
L3	Inductor, fixed, $0.22 \mu \mathrm{H}$, Jeffers 4416-5K
L4	Inductor, fixed, $0.15 \mu \mathrm{H}$, Jeffers 4415-1M
L5	Inductor, variable, Microdyne 201-299
L6	Inductor, variable, Microdyne 201-298
L7	Inductor, variable, $0.9 \mu \mathrm{H}$, Cambion 1507-5
L8	Inductor, variable, $0.9 \mu \mathrm{H}$, Cambion 1507-5
L9	Inductor, fixed, Microdyne 200-720
L10	Inductor, variable, Microdyne 201-301
L11	Inductor, variable, Microdyne 201-301
L12	Inductor, fixed, $0.15 \mu \mathrm{H}$, Jeffers 4415-1M
L13	Inductor, variable, Microdyne 201-300
L14	Inductor, variable, Mic rodyne 201-300
L15	Inductor, fixed, $0.47 \mu \mathrm{H}$, Jeffers 4425-2M
L16	Inductor, fixed, $5.6 \mu \mathrm{H}$, Jeffers $4435-1 \mathrm{~K}$
L17	Inductor, fixed, $5.6 \mu \mathrm{H}$, Jeffers $4435-1 \mathrm{~K}$
L18	Not Assigned
L19	Inductor, fixed, Microdyne 201-302
Q1	Transistor, RCA 2N6389
Q2	Transistor, Union Carbide 2N4416
Q3	Transistor, Union Carbide 2N4416
Q4	
thru	Transistor, RCA 2N5179
Q9	

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 045
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1045
Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 045
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005
Resistor, fixed composition, $5.1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB5 125
Resistor, fixed composition, $2.7 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB2725
Resistor, fixed composition, $15 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1535
Resistor, fixed composition, $1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1 025
Resistor, fixed composition, $750 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB7515
Resistor, fixed composition, $10 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005

Replaceable Parts List - A3, RF Chassis, cont'd.

Reference Designation

Description

R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39
R40
R41
R42
R43
R44
R45
R46
R47
R48
R49
R50
R51
R52
R53

Resistor, fixed composition, $100 \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1 015
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005 Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005 Resistor, fixed composition, $200 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{~W}$, Allen Bradley CB2025 Resistor, fixed composition, $10 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1035 Potentiometer, $10 \mathrm{~K} \pm 10 \%, 1 / 2 \mathrm{w}$, Allen Bradley WA2L040S103UC Resistor, fixed composition, $10 \Omega \pm 5 \%$, $\frac{1}{4} w$, Allen Bradley CB1 1005 Resistor, fixed composition, $10 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005 Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 045 Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1 045 Resistor, fixed composition, $10 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1025 Resistor, fixed composition, $108 \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 1005 Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005 Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4325 Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB 4325 Resistor, fixed composition, $1.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1325 Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005 Resistor, fixed composition, $51 \Omega \pm 5 \%, \frac{1}{4} w$, Allen Bradley CB5 105 Resistor, fixed composition, $51 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5 105 Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} w$, Allen Bradley CB1 005 Resistor, fixed composition, $4.7 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4725, nominal value
Resistor, fixed composition, $5.1 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB5 125 Resistor, fixed composition, 1. $2 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1225 Potentiometer, $10 \mathrm{~K} \pm 10 \%, 1 / 2 \mathrm{w}$, Allen Bradley WA2L040S103UC Resistor, fixed composition, $680 \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB6815 Resistor, fixed composition, $208 \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB2005, nominal value Resistor, fixed composition, $51 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5 105 Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005 Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1045 Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005 Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005 Resistor, fixed composition, $1 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1025 Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB 4325
Resistor, fixed composition, $16 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1635
Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1045
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} w$, Allen Bradley CB1005
Resistor, fixed composition, $620 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB6215
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4325 Resistor, fixed composition, $510 \Omega \pm 5 \%, \frac{1}{4} w$, Allen Bradley CB5115

Replaceable Parts List - A3, RF Chassis, cont'd.
Reference

Designation
R54 Resistor, fixed composition, $750 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB7515
R55
R56
R57
R58
R59
R60
R61
R62
R63
R64
R65
Resistor, fixed composition, $51 \Omega \pm 5 \%$, $\frac{1}{4} w$, Allen Bradley CB5105
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
Resistor, fixed composition, $510 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5 115
Resistor, fixed composition, $750 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB7515
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB 4325
Resistor, fixed composition, $220 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB2215
Resistor, fixed composition, $24 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB2405
Resistor, fixed composition, $220 \Omega \pm 5 \%, \frac{1}{4} w$, Allen Bradley CB2215
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} w$, Allen Bradley CB1 005
XQ1
thru Transistor, socket, Augat 8060-1G8
XQ9
Z1 Ferrite Bead, Fair Rite 2673000101
Z2 Ferrite Bead, Fair Rite 2673000101

6-6 A4, SYNTHESIZER

Reference
Designation

Description

A1 Synthesizer, Microdyne 302-627-1; nonrepairable
A2 Keyboard Assembly, Microdyne 302-628; nonrepairable
A3 Display Card Assembly, Microdyne 302-629; see paragraph 6-6.1 for breakdown listing
A4 Digital Interface Module, Microdyne 302-626; see paragraph 6-6. 2 for breakdown listing

6-6.1 A4A3, DISPLAY CARD ASSEMBLY

Reference
Designation
J3 Connector, 16-pin, Augat 516AG11D
J4
Connector, 16 -pin, Augat 516AG11D
R1
thru
R5

Description

Replaceable Parts List - A4A3, Display Card Assembly, cont'd.
Reference
Designation
R6
thru Not Assigned
R13
R14 Resistor, fixed composition, $15 \mathrm{~K} \pm 5 \%$, RC07GF153J
U1
thru Decoder Driver, Beckman DD-700
U5
U6
U7
Display, 3-digit, Beckman SP3300
Display, 3-digit, Beckman SP3300
XU1
thru
XU5
XU6 Socket, Beckman CS3300
XU7
6-6.2 A4A4, DIGITAL INTERFACE MODULE
Reference
Designation

C1	Not Assigned
C2	Not Assigned
C3	Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%, 100 \mathrm{~V}$, E rie 8131-B106-X5V-103M
C4	Capacitor, tantalum, $10 \mu \mathrm{~F} \pm 20 \%$, Sprague T368A105K020AS
C5	Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%, 100 \mathrm{~V}$, Erie 8131-B106-X5V-103M
C6	Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%, 100 \mathrm{~V}$, Erie 8131-B106-X5V-103M
C7	Capacitor, tantalum, $2.2 \mu \mathrm{~F} \pm 20 \%$, Sprague T368A22K035AS
C8	Capacitor, ceramic, $0.33 \mu \mathrm{~F} \pm 20 \%, 100 \mathrm{~V}$, Erie 8131-100-651-334M
C9	Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%, 100 \mathrm{~V}$, Erie 8131-B106-X5V-103M
C10	
thru	Capacitor, tantalum, $1 \mu \mathrm{~F} \pm 20 \%$, Sprague T368A105K035AS
C14	
CR1	Diode, Fairchild 1N914
Q1	Transistor, npn, Motorola 2N2222
Q2	Transistor, npn, Motorola 2N2222

Replaceable Parts List - A4A4, Digital Interface Module, cont'd.

Reference Designation	Description
R1	Not Assigned
R2	Resistor, metal film, $10 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D1002F
R3	Resistor, metal film, $10 \mathrm{~K} \Omega \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D1002F
R4	Resistor, metal film, $6.8 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{w}$, RN55D6811F
R5	Potentiometer, $10 \mathrm{~K} \pm 10 \%, 1 / 2 \mathrm{w}$, Beckman $66 \mathrm{WR1} 0 \mathrm{~K}$
R6	Factory Selectable
R7	Factory Selectable
R8	Potentiometer, $10 \mathrm{~K} \pm 10 \%, 1 / 2 \mathrm{w}$, Beckman $66 \mathrm{WR1} 0 \mathrm{~K}$
R9	Factory Selectable
R10	Factory Selectable
R11	Resistor, fixed composition, $1 \mathrm{~K} \pm 5 \%$, RC07GF102J
R12	
thru	Not Assigned
R14	
R15	Resistor, fixed composition, $15 \mathrm{~K} \pm 5 \%$, RC07GF153J
R16	Resistor, fixed composition, $10 \mathrm{~K} \pm 5 \%$, RC07103J
R17	Not Assigned
R18	Resistor, fixed composition, $1 \mathrm{~K} \pm 5 \%$, RC07GF102J
U1	Integrated Circuit, Keyboard Encoder, Harris Semiconductor HD-0165
U2	Integrated Circuit, Digital-to-Analog Converter, Micronetworks Corp. MN3212
U3	Integrated Circuit, Dual 4-NAND gates, Texas Instruments SN7420N
U4	Integrated Circuit, Decade Counter, Texas Instrument SN74192N
U5	Not Assigned
U6	Integrated Circuit, Dual Flip-Flop, Texas Instrument SN74107N
U7	Integrated Circuit, Quad NAND gates, Texas Instrument SN7400N
U8	Integrated Circuit, Quad NAND gates, Texas Instrument SN7400N
U9	Integrated Circuit, Monostable one-shot, Fairchild F9602PC
U10	Integrated Circuit, Decoder, Texas Instrument SN7442N
U11	Integrated Circuit, Decoder, Texas Instrument SN7442N
U12	Integrated Circuit, BCD adder, Signetics N82S83B
U13	Integrated Circuit, BCD adder, Signetics N82S83B
U14	Integrated Circuit, Operational Amplifier, National Semiconductor 741C
U15	Integrated Circuit, Operational Amplifier, National Semiconductor 741 C
U16	
thru	Integrated Circuit, Four-bit Storage Registers, Texas Instrument SN7419N
U19	
U20	Not Assigned
U21	Not Assigned
U22	Integrated Circuit, Multiplexer, Texas Instrument SN74157N
U23	Integrated Circuit, Multiplexer, Texas Instrument SN74157N
U24	Integrated Circuit, DC to DC Converter, Endicott Coil E715-215U

Replaceable Parts List - A4A4, Digital Interface Module, cont'd.

Reference
Designation

XU1 Socket, 24-pin, Augat 524AG11D
XU2
XU3
XU4
XU5
XU6
thru
XU8
XU9
thru
XU13
XU14
XU15
XU16
thru
XU19
XU20
XU21
XU22
XU23
Socket, 16-pin, Augat 516AG11D
Socket, 14-pin, Augat 514AG11D
Socket, 16-pin, Augat 516AG11D
Not Assigned
Socket, 14-pin, Augat 514AG11D
Socket, 16-pin, Augat 516AG11D
Socket, 8-pin, Augat 508AG11D
Socket, 8-pin, Augat 508AG11D
Socket, 14-pin, Augat 514AG11D
Not Assigned
Not Assigned
Socket, 16-pin, Augat 516AG11D
Socket, 16-pin, Augat 516AG11D

SECTION VII
 MAINTENANCE DIAGRAMS

7-1 INTRODUCTION

This section of the manual contains the schematic-wiring diagrams for the 1112-VT(SYN) Synthesized RF Tuner. Unless otherwise specified, the following information applies to each schematic diagram:
a. Capacitor values greater than 1.0 are in picofarads.
b. Capacitor values less than 1.0 are in microfarads.
c. Inductor values are in microhenrys.
d. Resistor values are in ohms: $\mathrm{k}=\times \mathrm{x} \mathrm{1000;} \mathrm{~m}=1,000,000$.
e. * denotes selected value.
f. ferrite bead.

Figure 7-1. Main Chassis Wiring Diagram

Figure 7-2. A1, Lowpass Filter, $\begin{aligned} & \text { Schematic Diagram }\end{aligned}$

> Courtesy of http://BlackRadios.terryo.org

Figure 7-3. A3, Dual Shaper Board, Schematic Diagram

NoTES:

1. Capacitor values getater than i.o
2. Capaciror values Less than 1.0

InOUCTOR VALLES ARE IN MICROHENRYS.

5. \# Denotes selected value.
6. -D-FERRTE beao.

	-		

